作者
Patrick A. Ott,Zhuting Hu,Derin B. Keskin,Sachet A. Shukla,Jing Sun,David J. Bozym,Wandi Zhang,Adrienne Luoma,Anita Giobbie‐Hurder,Lauren Peter,Christina Chen,Oriol Olive,Todd A. Carter,Shuqiang Li,David Lieb,Thomas Eisenhaure,Evisa Gjini,Jonathan Stevens,William J. Lane,Indu Javeri,Kaliappanadar Nellaiappan,Andrés M. Salazar,Heather Daley,Michael S. Seaman,Elizabeth I. Buchbinder,Charles H. Yoon,Maegan Harden,Niall J. Lennon,Stacey Gabriel,Scott J. Rodig,Dan H. Barouch,Jon C. Aster,Gad Getz,Kai W. Wucherpfennig,Donna Neuberg,Jerome Ritz,Eric S. Lander,Edward F. Fritsch,Nir Hacohen,Catherine J. Wu
摘要
The results of a phase I trial assessing a personal neoantigen multi-peptide vaccine in patients with melanoma, showing feasibility, safety, and immunogenicity. Neoantigens have long been considered optimal targets for anti-tumour vaccines, and recent mutation coding and prediction techniques have aimed to streamline their identification and selection. Two papers in this issue report results from personalized neoantigen vaccine trials in patients with cancer. Catherine Wu and colleagues report the results of a phase I trial of a personalized cancer vaccine that targets up to 20 patient neoantigens. The vaccine was safe and induced tumour-antigen-specific immune responses. Four out of six patients treated showed no recurrence at 25 months, and progressing patients responded to further therapy with checkpoint inhibitor. Ugur Sahin and colleagues report the first-in-human application of a personalized neoantigen vaccine in patients with melanoma. Their vaccination strategy includes sequencing and computational identification of neoantigens from patients, and design and manufacture of a poly-antigen RNA vaccine for treatment. In 13 patients, the vaccine boosted immunity against some of the selected tumour antigens from the individual patients, and two patients showed infiltration of tumour-reactive T cells. These results suggest that personalized vaccines could be refined and tailored to provide clinical benefit as cancer immunotherapies. Effective anti-tumour immunity in humans has been associated with the presence of T cells directed at cancer neoantigens1, a class of HLA-bound peptides that arise from tumour-specific mutations. They are highly immunogenic because they are not present in normal tissues and hence bypass central thymic tolerance. Although neoantigens were long-envisioned as optimal targets for an anti-tumour immune response2, their systematic discovery and evaluation only became feasible with the recent availability of massively parallel sequencing for detection of all coding mutations within tumours, and of machine learning approaches to reliably predict those mutated peptides with high-affinity binding of autologous human leukocyte antigen (HLA) molecules. We hypothesized that vaccination with neoantigens can both expand pre-existing neoantigen-specific T-cell populations and induce a broader repertoire of new T-cell specificities in cancer patients, tipping the intra-tumoural balance in favour of enhanced tumour control. Here we demonstrate the feasibility, safety, and immunogenicity of a vaccine that targets up to 20 predicted personal tumour neoantigens. Vaccine-induced polyfunctional CD4+ and CD8+ T cells targeted 58 (60%) and 15 (16%) of the 97 unique neoantigens used across patients, respectively. These T cells discriminated mutated from wild-type antigens, and in some cases directly recognized autologous tumour. Of six vaccinated patients, four had no recurrence at 25 months after vaccination, while two with recurrent disease were subsequently treated with anti-PD-1 (anti-programmed cell death-1) therapy and experienced complete tumour regression, with expansion of the repertoire of neoantigen-specific T cells. These data provide a strong rationale for further development of this approach, alone and in combination with checkpoint blockade or other immunotherapies.