The impact mechanism of Mn2+ ions on oxygen evolution reaction in zinc sulfate electrolyte

化学 析氧 电子转移 电解质 电化学 阳极 吸附 无机化学 氧化还原 化学工程 电极 物理化学 工程类
作者
Chenmu Zhang,Ning Duan,Linhua Jiang,Fuyuan Xu
出处
期刊:Journal of Electroanalytical Chemistry [Elsevier]
卷期号:811: 53-61 被引量:20
标识
DOI:10.1016/j.jelechem.2018.01.040
摘要

The impact mechanism of Mn2+ on the oxygen evolution reaction (OER) on the fresh lead-based anode in zinc sulfate electrolyte has been studied in detail by several electrochemical methods, XRD, SEM and EDX. The kinetics analysis suggested that the Mn2+ could significantly enhance OER, which was controlled by the electron transfer process between the active site S and H2O (step (2)). This positive effect of Mn2+ on OER was limited with the increase of Mn2+ because of the approaching saturation of active sites. Results obtained from the Arrhenius equation disclosed the larger bond strength of MnO2-OH in decreasing the activation energy of OER (from 55.08 to 47.04 kJ/mol), meanwhile, it also further supported the fact that the OER was electrochemical-controlled and it would not be changed in essence with the addition of Mn2+, which is subject to the activation energy barrier of electron transfer induced by the active site S (step (2)). EIS data revealed adsorption resistance of the intermediate (S-OHads), Ra played a major role among the whole reaction resistance, whereas, the impact contribution of charge transfer resistance, Rt became larger as the Mn2+ increases, which revealed that the inhibition of electron transfer process due to the changes of the anode surface microstructure. Electron microscope technology suggested the key role Mn2+ played in the modification of the active interface structure, and its influence process on OER was revealed by the microstructure analysis of anode surface. Considering the potential of Mn2+ concentration optimization in reducing heavy metal pollutants and energy consumption, enhancing the understanding of impact mechanism of Mn2+ on OER provides a feasible proposal in zinc electrolysis industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君君完成签到 ,获得积分10
1秒前
吃不饱星球球长应助访云采纳,获得20
1秒前
2秒前
琳静发布了新的文献求助10
2秒前
3秒前
JamesPei应助LCQ采纳,获得10
4秒前
5秒前
5秒前
跳跃的语风完成签到,获得积分10
6秒前
7秒前
开朗雨琴发布了新的文献求助10
7秒前
oceanao应助LIUYI采纳,获得10
7秒前
Murray发布了新的文献求助10
8秒前
9秒前
jmg03发布了新的文献求助10
10秒前
11秒前
ha发布了新的文献求助10
11秒前
13秒前
共享精神应助包容的砖头采纳,获得10
13秒前
15秒前
15秒前
ding应助zjq采纳,获得10
15秒前
A灰机完成签到,获得积分10
16秒前
16秒前
CipherSage应助asd采纳,获得10
16秒前
琳静完成签到,获得积分10
17秒前
zhang完成签到,获得积分10
18秒前
小新完成签到,获得积分10
18秒前
杨气罐发布了新的文献求助10
19秒前
20秒前
hulala发布了新的文献求助10
21秒前
石页耶耶耶完成签到,获得积分20
22秒前
wujingshuai完成签到,获得积分10
22秒前
22秒前
ws发布了新的文献求助10
22秒前
22秒前
善学以致用应助zai采纳,获得10
23秒前
彭于晏应助聪聪great采纳,获得10
23秒前
Owen应助热情的戾采纳,获得10
23秒前
若初拾光发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161232
求助须知:如何正确求助?哪些是违规求助? 2812684
关于积分的说明 7895969
捐赠科研通 2471492
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631084
版权声明 602112