Joint structural and physiological control on the interannual variation in productivity in a temperate grassland: A data-model comparison

叶面积指数 草原 环境科学 初级生产 大气科学 生态系统 碳循环 温带气候 陆地生态系统 农学 生态学 生物 地质学
作者
Zhongmin Hu,Hao Shi,Kaili Cheng,Ying‐Ping Wang,Shilong Piao,Yue Li,Li Zhang,Jianyang Xia,Lei Zhou,Wenping Yuan,S. W. Running,Longhui Li,Yanbin Hao,Nianpeng He,Qiang Yu,Guirui Yu
出处
期刊:Global Change Biology [Wiley]
卷期号:24 (7): 2965-2979 被引量:51
标识
DOI:10.1111/gcb.14274
摘要

Given the important contributions of semiarid region to global land carbon cycle, accurate modeling of the interannual variability (IAV) of terrestrial gross primary productivity (GPP) is important but remains challenging. By decomposing GPP into leaf area index (LAI) and photosynthesis per leaf area (i.e., GPP_leaf), we investigated the IAV of GPP and the mechanisms responsible in a temperate grassland of northwestern China. We further assessed six ecosystem models for their capabilities in reproducing the observed IAV of GPP in a temperate grassland from 2004 to 2011 in China. We observed that the responses to LAI and GPP_leaf to soil water significantly contributed to IAV of GPP at the grassland ecosystem. Two of six models with prescribed LAI simulated of the observed IAV of GPP quite well, but still underestimated the variance of GPP_leaf, therefore the variance of GPP. In comparison, simulated pattern by the other four models with prognostic LAI differed significantly from the observed IAV of GPP. Only some models with prognostic LAI can capture the observed sharp decline of GPP in drought years. Further analysis indicated that accurately representing the responses of GPP_leaf and leaf stomatal conductance to soil moisture are critical for the models to reproduce the observed IAV of GPP_leaf. Our framework also identified that the contributions of LAI and GPP_leaf to the observed IAV of GPP were relatively independent. We conclude that our framework of decomposing GPP into LAI and GPP_leaf has a significant potential for facilitating future model intercomparison, benchmarking and optimization should be adopted for future data-model comparisons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大意的惊蛰完成签到,获得积分10
刚刚
Yidie发布了新的文献求助10
1秒前
orixero应助沉睡的大马猴采纳,获得10
1秒前
个性凡儿发布了新的文献求助10
1秒前
2秒前
yummm完成签到 ,获得积分10
2秒前
3秒前
希望天下0贩的0应助囚徒采纳,获得10
3秒前
3秒前
蝉蝉完成签到,获得积分10
4秒前
醉熏的荣轩完成签到 ,获得积分10
4秒前
4秒前
英姑应助勤奋靖易采纳,获得10
4秒前
5秒前
6秒前
6秒前
耍酷的冷雪完成签到,获得积分10
6秒前
fff1发布了新的文献求助20
6秒前
个性凡儿完成签到,获得积分10
7秒前
7秒前
james发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
10秒前
陈诚完成签到,获得积分10
10秒前
yxl0214发布了新的文献求助10
10秒前
大模型应助帮抬抬采纳,获得10
10秒前
11秒前
慕青应助xiaoxiang采纳,获得10
12秒前
失眠呆呆鱼完成签到 ,获得积分10
12秒前
13秒前
13秒前
大导师完成签到,获得积分10
14秒前
14秒前
时代炸蛋完成签到 ,获得积分10
15秒前
yushanriqing发布了新的文献求助10
16秒前
健康的人生完成签到,获得积分10
18秒前
爱撒娇的西装完成签到,获得积分10
18秒前
23完成签到,获得积分20
18秒前
aimynora完成签到 ,获得积分10
19秒前
丘比特应助yxl0214采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709