Amorphous Porous Organic Cage Membranes for Water Desalination

海水淡化 反渗透 无定形固体 化学工程 材料科学 化学 有机化学 工程类 生物化学
作者
Xian Kong,Jianwen Jiang
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:122 (3): 1732-1740 被引量:29
标识
DOI:10.1021/acs.jpcc.7b11497
摘要

Emerged as a new class of nanoporous materials, porous organic cages (POCs) possess salient features of solvent processability and water stability; thus, they are envisioned as promising membrane materials for water desalination. In this study, we propose a simulation protocol to construct atomic models of amorphous POC membranes and examine their desalination performance. Five membranes (AC1, AC2, AC3, AC16, and AC17) with similar cage structure but different periphery groups are considered. All the five membranes exhibit 100% salt rejection. In contrast to crystalline CC1 membrane, which is impermeable to water, AC1 has a water permeability Pw of 3.6 × 10–8 kg·m/(m2·h·bar). With increasing interconnected pores in AC2, AC3, AC16, and AC17, Pw increases. Due to the existence of hydroxyl groups in CC17 cages, AC17 exhibits the highest Pw of 3.17 × 10–7 kg·m/(m2·h·bar), which is higher than in commercial reverse osmosis membranes. Significantly, Pw is found to enhance in mixed AC3/AC17 and AC16/AC17 membranes with up to one-fold enhancement. The enhanced Pw is attributed to the counterbalance between water sorption and diffusion. This simulation study provides the bottom-up insights into the dynamics and structure of water in amorphous POC membranes, highlights their potential use for water desalination, and suggests a unique strategy to enhance desalination performance by tuning the composition of mixed POC membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快凌晴发布了新的文献求助10
刚刚
1秒前
田様应助跟我说晚安采纳,获得10
2秒前
Cactus应助筑梦未来采纳,获得10
2秒前
penguinli完成签到,获得积分10
2秒前
脑洞疼应助坚强的严青采纳,获得10
3秒前
Ttt发布了新的文献求助10
3秒前
penny发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
私藏人间完成签到,获得积分20
4秒前
5秒前
蕾蕾发布了新的文献求助150
5秒前
wanyanjin发布了新的文献求助20
5秒前
完美世界应助米虫采纳,获得10
5秒前
背完单词好睡觉完成签到 ,获得积分10
5秒前
复杂大地完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
田様应助落寞丹烟采纳,获得10
7秒前
Qianbaor68应助chj采纳,获得20
8秒前
8秒前
天天快乐应助泡面小猪采纳,获得10
8秒前
lcy完成签到,获得积分20
8秒前
今后应助跳跃的邪欢采纳,获得10
9秒前
xu完成签到,获得积分10
9秒前
zhoumaoyuan发布了新的文献求助10
9秒前
丘比特应助hbzyydx46采纳,获得10
10秒前
复杂大地发布了新的文献求助30
10秒前
10秒前
桐桐应助catteryii采纳,获得10
10秒前
所所应助Willer采纳,获得10
11秒前
xj发布了新的文献求助10
11秒前
牛马发布了新的文献求助10
11秒前
超级惜筠给超级惜筠的求助进行了留言
11秒前
11秒前
石建霏发布了新的文献求助10
12秒前
Gzzzzzz发布了新的文献求助10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 535
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727082
求助须知:如何正确求助?哪些是违规求助? 3272095
关于积分的说明 9975529
捐赠科研通 2987465
什么是DOI,文献DOI怎么找? 1639017
邀请新用户注册赠送积分活动 778398
科研通“疑难数据库(出版商)”最低求助积分说明 747613