亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs

医学 射线照相术 标准差 骨龄 试验装置 数据集 卷积神经网络 人工智能 成对比较 深度学习 标准分 人工神经网络 地图集(解剖学) 机器学习 统计 放射科 数学 计算机科学 解剖
作者
David B. Larson,Matthew C. Chen,Matthew P. Lungren,Safwan S. Halabi,Nicholas V. Stence,Curtis P. Langlotz
出处
期刊:Radiology [Radiological Society of North America]
卷期号:287 (1): 313-322 被引量:405
标识
DOI:10.1148/radiol.2017170236
摘要

Purpose To compare the performance of a deep-learning bone age assessment model based on hand radiographs with that of expert radiologists and that of existing automated models. Materials and Methods The institutional review board approved the study. A total of 14 036 clinical hand radiographs and corresponding reports were obtained from two children's hospitals to train and validate the model. For the first test set, composed of 200 examinations, the mean of bone age estimates from the clinical report and three additional human reviewers was used as the reference standard. Overall model performance was assessed by comparing the root mean square (RMS) and mean absolute difference (MAD) between the model estimates and the reference standard bone ages. Ninety-five percent limits of agreement were calculated in a pairwise fashion for all reviewers and the model. The RMS of a second test set composed of 913 examinations from the publicly available Digital Hand Atlas was compared with published reports of an existing automated model. Results The mean difference between bone age estimates of the model and of the reviewers was 0 years, with a mean RMS and MAD of 0.63 and 0.50 years, respectively. The estimates of the model, the clinical report, and the three reviewers were within the 95% limits of agreement. RMS for the Digital Hand Atlas data set was 0.73 years, compared with 0.61 years of a previously reported model. Conclusion A deep-learning convolutional neural network model can estimate skeletal maturity with accuracy similar to that of an expert radiologist and to that of existing automated models. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on January 19, 2018.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
自己发布了新的文献求助10
11秒前
15秒前
closer发布了新的文献求助10
17秒前
传奇3应助自己采纳,获得10
43秒前
closer完成签到,获得积分10
52秒前
某某某完成签到,获得积分10
54秒前
自己完成签到,获得积分10
54秒前
1分钟前
1分钟前
1分钟前
lovelife发布了新的文献求助10
1分钟前
1分钟前
聪明的云完成签到 ,获得积分10
2分钟前
阿泽完成签到 ,获得积分10
2分钟前
2分钟前
张泽崇发布了新的文献求助10
2分钟前
1206425219密完成签到,获得积分10
2分钟前
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
4分钟前
Aliothae完成签到,获得积分20
4分钟前
科研通AI5应助929采纳,获得10
4分钟前
HLT完成签到 ,获得积分10
4分钟前
4分钟前
小秋发布了新的文献求助10
4分钟前
CC完成签到,获得积分0
4分钟前
4分钟前
4分钟前
4分钟前
Jero21发布了新的文献求助10
5分钟前
小秋完成签到,获得积分10
5分钟前
Jero21完成签到,获得积分20
5分钟前
5分钟前
6分钟前
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155657
捐赠科研通 3245410
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216