Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs

医学 射线照相术 标准差 骨龄 试验装置 数据集 卷积神经网络 人工智能 成对比较 深度学习 标准分 人工神经网络 地图集(解剖学) 机器学习 统计 放射科 数学 计算机科学 解剖
作者
David B. Larson,Matthew C. Chen,Matthew P. Lungren,Safwan S. Halabi,Nicholas V. Stence,Curtis P. Langlotz
出处
期刊:Radiology [Radiological Society of North America]
卷期号:287 (1): 313-322 被引量:397
标识
DOI:10.1148/radiol.2017170236
摘要

Purpose To compare the performance of a deep-learning bone age assessment model based on hand radiographs with that of expert radiologists and that of existing automated models. Materials and Methods The institutional review board approved the study. A total of 14 036 clinical hand radiographs and corresponding reports were obtained from two children's hospitals to train and validate the model. For the first test set, composed of 200 examinations, the mean of bone age estimates from the clinical report and three additional human reviewers was used as the reference standard. Overall model performance was assessed by comparing the root mean square (RMS) and mean absolute difference (MAD) between the model estimates and the reference standard bone ages. Ninety-five percent limits of agreement were calculated in a pairwise fashion for all reviewers and the model. The RMS of a second test set composed of 913 examinations from the publicly available Digital Hand Atlas was compared with published reports of an existing automated model. Results The mean difference between bone age estimates of the model and of the reviewers was 0 years, with a mean RMS and MAD of 0.63 and 0.50 years, respectively. The estimates of the model, the clinical report, and the three reviewers were within the 95% limits of agreement. RMS for the Digital Hand Atlas data set was 0.73 years, compared with 0.61 years of a previously reported model. Conclusion A deep-learning convolutional neural network model can estimate skeletal maturity with accuracy similar to that of an expert radiologist and to that of existing automated models. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on January 19, 2018.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无花果应助zz1234采纳,获得10
1秒前
xiaozhuoolife完成签到,获得积分20
2秒前
2秒前
CipherSage应助jm采纳,获得10
2秒前
含蓄康发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
科研吗喽发布了新的文献求助10
5秒前
HZW完成签到,获得积分10
6秒前
旺仔完成签到 ,获得积分10
6秒前
乐乐发布了新的文献求助10
7秒前
Hedy完成签到,获得积分10
9秒前
我的名字是山脉完成签到,获得积分10
10秒前
刻苦沛芹关注了科研通微信公众号
10秒前
11秒前
linzw完成签到,获得积分10
11秒前
SciGPT应助温柔寄文采纳,获得10
11秒前
小猪佩奇完成签到,获得积分10
12秒前
13秒前
彭于晏应助惰性气体采纳,获得10
13秒前
15秒前
开心就好完成签到 ,获得积分10
15秒前
15秒前
1234567发布了新的文献求助10
17秒前
Yurole完成签到,获得积分10
18秒前
20秒前
慕青应助秋听寒采纳,获得10
22秒前
23秒前
Airy完成签到,获得积分10
24秒前
24秒前
24秒前
刻苦沛芹发布了新的文献求助10
24秒前
橘子味汽水完成签到 ,获得积分10
25秒前
帅气的Q应助如意的子默采纳,获得10
26秒前
27秒前
wanci应助重要冲采纳,获得10
27秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206581
求助须知:如何正确求助?哪些是违规求助? 2856095
关于积分的说明 8102312
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354154
科研通“疑难数据库(出版商)”最低求助积分说明 641973
邀请新用户注册赠送积分活动 613167