Improved Genotype-Guided Deep Radiomics Signatures for Recurrence Prediction of Non-Small Cell Lung Cancer

无线电技术 肺癌 人工智能 计算机断层摄影术 计算机科学 融合 放射基因组学 放射科 医学 肿瘤科 语言学 哲学
作者
Panyanat Aonpong,Yutaro Iwamoto,Xian-Hua Han,Lanfen Lin,Yen‐Wei Chen
标识
DOI:10.1109/embc46164.2021.9630703
摘要

Non-small cell lung cancer (NSCLC) is a type of lung cancer that has a high recurrence rate after surgery. Precise prediction of preoperative prognosis for NSCLC recurrence tends to contribute to the suitable preparation for treatment. Currently, many studied have been conducted to predict the recurrence of NSCLC based on Computed Tomography-images (CT images) or genetic data. The CT image is not expensive but inaccurate. The gene data is more expensive but has high accuracy. In this study, we proposed a genotype-guided radiomics method called GGR and GGR_Fusion to make a higher accuracy prediction model with requires only CT images. The GGR is a two-step method which is consists of two models: the gene estimation model using deep learning and the recurrence prediction model using estimated genes. We further propose an improved performance model based on the GGR model called GGR_Fusion to improve the accuracy. The GGR_Fusion uses the extracted features from the gene estimation model to enhance the recurrence prediction model. The experiments showed that the prediction performance can be improved significantly from 78.61% accuracy, AUC=0.66 (existing radiomics method), 79.09% accuracy, AUC=0.68 (deep learning method) to 83.28% accuracy, AUC=0.77 by the proposed GGR and 84.39% accuracy, AUC=0.79 by the proposed GGR_Fusion.Clinical Relevance—This study improved the preoperative recurrence of NSCLC prediction accuracy from 78.61% by the conventional method to 84.39% by our proposed method using only the CT image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清浅完成签到,获得积分10
刚刚
1秒前
1秒前
尊敬伟宸完成签到,获得积分10
1秒前
丁真先生完成签到,获得积分10
2秒前
3秒前
Xuhao23完成签到,获得积分10
3秒前
pqy发布了新的文献求助10
6秒前
三山三完成签到,获得积分10
6秒前
LJM完成签到,获得积分10
6秒前
Lian发布了新的文献求助10
7秒前
树懒完成签到,获得积分10
8秒前
nini发布了新的文献求助10
8秒前
王Hope完成签到,获得积分10
9秒前
贝壳完成签到,获得积分10
10秒前
11秒前
勤恳傻姑发布了新的文献求助20
11秒前
12秒前
SciGPT应助自信鞯采纳,获得10
13秒前
14秒前
LIN发布了新的文献求助10
14秒前
Ava应助清新的沛蓝采纳,获得10
14秒前
14秒前
14秒前
woodheart完成签到,获得积分10
17秒前
无情山水完成签到,获得积分10
17秒前
17秒前
casperzwj完成签到,获得积分10
18秒前
111发布了新的文献求助10
19秒前
童话smile发布了新的文献求助10
19秒前
Akim应助skier采纳,获得10
20秒前
20秒前
情怀应助粱乘风采纳,获得10
20秒前
goodnight应助虚心海燕采纳,获得10
21秒前
janine完成签到,获得积分10
21秒前
深情安青应助Abx采纳,获得10
21秒前
甜心完成签到,获得积分10
22秒前
22秒前
Potato完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512612
求助须知:如何正确求助?哪些是违规求助? 3095042
关于积分的说明 9225769
捐赠科研通 2789869
什么是DOI,文献DOI怎么找? 1530915
邀请新用户注册赠送积分活动 711213
科研通“疑难数据库(出版商)”最低求助积分说明 706650