亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High‐fidelity fast volumetric brain MRI using synergistic wave‐controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN)

流体衰减反转恢复 鉴别器 图像质量 计算机科学 人工智能 降噪 模式识别(心理学) 计算机视觉 磁共振成像 图像(数学) 医学 探测器 电信 放射科
作者
Ziyu Li,Qiyuan Tian,Chanon Ngamsombat,Samuel Cartmell,John Conklin,Augusto Lio M. Gonçalves Filho,Wei‐Ching Lo,Guangzhi Wang,Kui Ying,Kawin Setsompop,Qiuyun Fan,Berkin Bilgiç,Stephen Cauley,Susie Y. Huang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (2): 1000-1014 被引量:11
标识
DOI:10.1002/mp.15427
摘要

The goal of this study is to leverage an advanced fast imaging technique, wave-controlled aliasing in parallel imaging (Wave-CAIPI), and a generative adversarial network (GAN) for denoising to achieve accelerated high-quality high-signal-to-noise-ratio (SNR) volumetric magnetic resonance imaging (MRI).Three-dimensional (3D) T2 -weighted fluid-attenuated inversion recovery (FLAIR) image data were acquired on 33 multiple sclerosis (MS) patients using a prototype Wave-CAIPI sequence (acceleration factor R = 3 × 2, 2.75 min) and a standard T2 -sampling perfection with application-optimized contrasts by using flip angle evolution (SPACE) FLAIR sequence (R = 2, 7.25 min). A hybrid denoising GAN entitled "HDnGAN" consisting of a 3D generator and a 2D discriminator was proposed to denoise highly accelerated Wave-CAIPI images. HDnGAN benefits from the improved image synthesis performance provided by the 3D generator and increased training samples from a limited number of patients for training the 2D discriminator. HDnGAN was trained and validated on data from 25 MS patients with the standard FLAIR images as the target and evaluated on data from eight MS patients not seen during training. HDnGAN was compared to other denoising methods including adaptive optimized nonlocal means (AONLM), block matching with 4D filtering (BM4D), modified U-Net (MU-Net), and 3D GAN in qualitative and quantitative analysis of output images using the mean squared error (MSE) and Visual Geometry Group (VGG) perceptual loss compared to standard FLAIR images, and a reader assessment by two neuroradiologists regarding sharpness, SNR, lesion conspicuity, and overall quality. Finally, the performance of these denoising methods was compared at higher noise levels using simulated data with added Rician noise.HDnGAN effectively denoised low-SNR Wave-CAIPI images with sharpness and rich textural details, which could be adjusted by controlling the contribution of the adversarial loss to the total loss when training the generator. Quantitatively, HDnGAN (λ = 10-3 ) achieved low MSE and the lowest VGG perceptual loss. The reader study showed that HDnGAN (λ = 10-3 ) significantly improved the SNR of Wave-CAIPI images (p < 0.001), outperformed AONLM (p = 0.015), BM4D (p < 0.001), MU-Net (p < 0.001), and 3D GAN (λ = 10-3 ) (p < 0.001) regarding image sharpness, and outperformed MU-Net (p < 0.001) and 3D GAN (λ = 10-3 ) (p = 0.001) regarding lesion conspicuity. The overall quality score of HDnGAN (λ = 10-3 ) (4.25 ± 0.43) was significantly higher than those from Wave-CAIPI (3.69 ± 0.46, p = 0.003), BM4D (3.50 ± 0.71, p = 0.001), MU-Net (3.25 ± 0.75, p < 0.001), and 3D GAN (λ = 10-3 ) (3.50 ± 0.50, p < 0.001), with no significant difference compared to standard FLAIR images (4.38 ± 0.48, p = 0.333). The advantages of HDnGAN over other methods were more obvious at higher noise levels.HDnGAN provides robust and feasible denoising while preserving rich textural detail in empirical volumetric MRI data. Our study using empirical patient data and systematic evaluation supports the use of HDnGAN in combination with modern fast imaging techniques such as Wave-CAIPI to achieve high-fidelity fast volumetric MRI and represents an important step to the clinical translation of GANs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
矢思然完成签到,获得积分10
14秒前
18秒前
21秒前
黄滔发布了新的文献求助10
26秒前
zhongu发布了新的文献求助10
29秒前
好好学习完成签到,获得积分10
42秒前
44秒前
45秒前
小哈完成签到 ,获得积分10
47秒前
从容映易完成签到,获得积分10
1分钟前
1分钟前
1分钟前
传奇3应助甜甜的金鑫采纳,获得10
1分钟前
andrele发布了新的文献求助10
1分钟前
lzxbarry完成签到,获得积分0
1分钟前
王酸菜完成签到 ,获得积分10
1分钟前
臣粉完成签到 ,获得积分10
1分钟前
Owen应助jerseyxue采纳,获得10
1分钟前
小糖完成签到 ,获得积分10
1分钟前
等待的mango完成签到,获得积分10
1分钟前
joanna完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
jerseyxue发布了新的文献求助10
2分钟前
wubuking完成签到 ,获得积分10
2分钟前
2分钟前
成蹊发布了新的文献求助30
2分钟前
Leon发布了新的文献求助10
2分钟前
3分钟前
11发布了新的文献求助10
3分钟前
香蕉觅云应助zyp采纳,获得10
3分钟前
3分钟前
成蹊完成签到,获得积分20
3分钟前
3分钟前
wanwan完成签到,获得积分10
3分钟前
甜甜玫瑰应助hhj采纳,获得10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413361
求助须知:如何正确求助?哪些是违规求助? 3015651
关于积分的说明 8871610
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482234
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679944