Porosity prediction from pre-stack seismic data via committee machine with optimized parameters

多孔性 人工神经网络 支持向量机 均方误差 测井 近似误差 算法 相关系数 油田 决定系数 计算机科学 数学 数据挖掘 地质学 统计 机器学习 石油工程 岩土工程
作者
Amin Gholami,Masoud Amirpour,Hamid Reza Ansari,Seyed Mohsen Seyedali,Amir Semnani,Naser Golsanami,Ehsan Heidaryan,Mehdi Ostadhassan
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:210: 110067-110067 被引量:10
标识
DOI:10.1016/j.petrol.2021.110067
摘要

Prediction of porosity from the seismic data via geophysical methods when limited number of wells are available is a challenging task that has high uncertainties. This study aims to construct a hybrid data-driven predictive model to establish a quantitative correlation between seismic pre-stack (SPS) data and the porosity. First, three intelligent models that are optimized by bat-inspired algorithm (BA): optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR) are constructed for relating porosity to the SPS data. Then, to benefit from all individual optimized models, a final hybrid model was built via committee machine (CM) where single models are combined with a proper weight to predict porosity in the reservoir space. This approach is examined on the SPS data from an oil field in the Persian Gulf with a single exploratory well where input parameters (Vp, Vs, and ρ) to the AI models are derived from a two-parameter inversion method. We found that the coefficient of determination, root mean square error, average absolute relative error, and symmetric mean absolute percentage error for the CM are 0.923615, 0.015793, 0.132280, and 0.061310, respectively. Moreover, based on four statistical indexes that are calculated for each model, CM outperformed its individual elements followed by the OSRV. A comprehensive analysis of the results confirms that CM with the OM elements is a superior approach for computing porosity from the SPS in the well and then throughout the entire reservoir volume. This strategy can aid petroleum engineers to have a better forecast of porosity population in the reservoir static model immediately following the data that is obtained from the first exploratory well. Ultimately, successful implementation of this approach will promptly delineate sweet spots that can replace uncertain and complicated conventional geophysical methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
傻芙芙的完成签到,获得积分10
2秒前
小刚发布了新的文献求助10
4秒前
带领大家完成签到,获得积分10
6秒前
舒适静丹完成签到,获得积分10
7秒前
小马能发sci完成签到,获得积分10
7秒前
8秒前
zsz完成签到,获得积分10
10秒前
王一证完成签到,获得积分10
11秒前
科研通AI2S应助zzznznnn采纳,获得10
12秒前
liumu完成签到 ,获得积分10
13秒前
健壮雨兰完成签到,获得积分10
13秒前
lili发布了新的文献求助10
13秒前
今天进步了吗完成签到,获得积分10
14秒前
17秒前
neu_zxy1991完成签到,获得积分10
17秒前
Yvan发布了新的文献求助20
18秒前
CodeCraft应助lili采纳,获得10
20秒前
23秒前
个性的紫菜应助缥缈听芹采纳,获得10
24秒前
小张完成签到,获得积分10
24秒前
沐阳完成签到,获得积分10
25秒前
大胆的弼完成签到,获得积分10
27秒前
鳗鱼青柏发布了新的文献求助10
27秒前
lili完成签到,获得积分10
27秒前
研友_VZG7GZ应助小刚采纳,获得10
27秒前
李健的小迷弟应助junzilan采纳,获得10
29秒前
Tal完成签到,获得积分10
29秒前
1212完成签到 ,获得积分10
32秒前
冷酷的啤酒完成签到,获得积分10
32秒前
陶醉元冬完成签到,获得积分10
32秒前
652183758完成签到 ,获得积分10
34秒前
悄悄.完成签到,获得积分10
36秒前
leeeeee完成签到,获得积分10
36秒前
hjx完成签到 ,获得积分10
38秒前
所所应助典雅夏之采纳,获得10
40秒前
BB鸟完成签到 ,获得积分10
42秒前
敏酱12138完成签到,获得积分10
43秒前
45秒前
不辣的完成签到 ,获得积分10
46秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java: A Project-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269135
求助须知:如何正确求助?哪些是违规求助? 2908715
关于积分的说明 8346599
捐赠科研通 2578877
什么是DOI,文献DOI怎么找? 1402481
科研通“疑难数据库(出版商)”最低求助积分说明 655455
邀请新用户注册赠送积分活动 634602