亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Porosity prediction from pre-stack seismic data via committee machine with optimized parameters

多孔性 人工神经网络 支持向量机 均方误差 测井 近似误差 算法 相关系数 油田 决定系数 计算机科学 数学 数据挖掘 地质学 统计 机器学习 石油工程 岩土工程
作者
Amin Gholami,Masoud Amirpour,Hamid Reza Ansari,Seyed Mohsen Seyedali,Amir Semnani,Naser Golsanami,Ehsan Heidaryan,Mehdi Ostadhassan
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:210: 110067-110067 被引量:10
标识
DOI:10.1016/j.petrol.2021.110067
摘要

Prediction of porosity from the seismic data via geophysical methods when limited number of wells are available is a challenging task that has high uncertainties. This study aims to construct a hybrid data-driven predictive model to establish a quantitative correlation between seismic pre-stack (SPS) data and the porosity. First, three intelligent models that are optimized by bat-inspired algorithm (BA): optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR) are constructed for relating porosity to the SPS data. Then, to benefit from all individual optimized models, a final hybrid model was built via committee machine (CM) where single models are combined with a proper weight to predict porosity in the reservoir space. This approach is examined on the SPS data from an oil field in the Persian Gulf with a single exploratory well where input parameters (Vp, Vs, and ρ) to the AI models are derived from a two-parameter inversion method. We found that the coefficient of determination, root mean square error, average absolute relative error, and symmetric mean absolute percentage error for the CM are 0.923615, 0.015793, 0.132280, and 0.061310, respectively. Moreover, based on four statistical indexes that are calculated for each model, CM outperformed its individual elements followed by the OSRV. A comprehensive analysis of the results confirms that CM with the OM elements is a superior approach for computing porosity from the SPS in the well and then throughout the entire reservoir volume. This strategy can aid petroleum engineers to have a better forecast of porosity population in the reservoir static model immediately following the data that is obtained from the first exploratory well. Ultimately, successful implementation of this approach will promptly delineate sweet spots that can replace uncertain and complicated conventional geophysical methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温水完成签到 ,获得积分10
1秒前
超级野狼发布了新的文献求助10
4秒前
crx发布了新的文献求助10
4秒前
撒旦啊实打实的完成签到,获得积分10
10秒前
可爱的函函应助Guts采纳,获得10
15秒前
科研通AI6.1应助Guts采纳,获得10
15秒前
乐乐应助材料生采纳,获得10
16秒前
CodeCraft应助crx采纳,获得10
17秒前
淡淡的秋柳完成签到 ,获得积分10
26秒前
26秒前
和光同尘完成签到,获得积分10
28秒前
柚子完成签到 ,获得积分10
29秒前
材料生发布了新的文献求助10
31秒前
35秒前
39秒前
万事胜意完成签到 ,获得积分10
41秒前
45秒前
minkeyantong完成签到 ,获得积分10
51秒前
xintai完成签到,获得积分10
54秒前
材料生完成签到,获得积分10
58秒前
丘比特应助wu采纳,获得30
58秒前
共享精神应助zhaoyali采纳,获得10
59秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
CAOHOU应助科研通管家采纳,获得10
1分钟前
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
姚奋斗完成签到,获得积分10
1分钟前
1分钟前
橙子完成签到,获得积分10
1分钟前
wq完成签到 ,获得积分10
1分钟前
李爱国应助超级野狼采纳,获得10
1分钟前
黄任行完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754672
求助须知:如何正确求助?哪些是违规求助? 5488707
关于积分的说明 15380490
捐赠科研通 4893182
什么是DOI,文献DOI怎么找? 2631791
邀请新用户注册赠送积分活动 1579727
关于科研通互助平台的介绍 1535475