Porosity prediction from pre-stack seismic data via committee machine with optimized parameters

多孔性 人工神经网络 支持向量机 均方误差 测井 近似误差 算法 相关系数 油田 决定系数 计算机科学 数学 数据挖掘 地质学 统计 机器学习 石油工程 岩土工程
作者
Amin Gholami,Masoud Amirpour,Hamid Reza Ansari,Seyed Mohsen Seyedali,Amir Semnani,Naser Golsanami,Ehsan Heidaryan,Mehdi Ostadhassan
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:210: 110067-110067 被引量:10
标识
DOI:10.1016/j.petrol.2021.110067
摘要

Prediction of porosity from the seismic data via geophysical methods when limited number of wells are available is a challenging task that has high uncertainties. This study aims to construct a hybrid data-driven predictive model to establish a quantitative correlation between seismic pre-stack (SPS) data and the porosity. First, three intelligent models that are optimized by bat-inspired algorithm (BA): optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR) are constructed for relating porosity to the SPS data. Then, to benefit from all individual optimized models, a final hybrid model was built via committee machine (CM) where single models are combined with a proper weight to predict porosity in the reservoir space. This approach is examined on the SPS data from an oil field in the Persian Gulf with a single exploratory well where input parameters (Vp, Vs, and ρ) to the AI models are derived from a two-parameter inversion method. We found that the coefficient of determination, root mean square error, average absolute relative error, and symmetric mean absolute percentage error for the CM are 0.923615, 0.015793, 0.132280, and 0.061310, respectively. Moreover, based on four statistical indexes that are calculated for each model, CM outperformed its individual elements followed by the OSRV. A comprehensive analysis of the results confirms that CM with the OM elements is a superior approach for computing porosity from the SPS in the well and then throughout the entire reservoir volume. This strategy can aid petroleum engineers to have a better forecast of porosity population in the reservoir static model immediately following the data that is obtained from the first exploratory well. Ultimately, successful implementation of this approach will promptly delineate sweet spots that can replace uncertain and complicated conventional geophysical methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助KIQING采纳,获得10
刚刚
CX完成签到,获得积分10
刚刚
刚刚
可乐不了完成签到 ,获得积分10
刚刚
Akim应助一煽情采纳,获得10
刚刚
1秒前
1秒前
海参发布了新的文献求助10
1秒前
gyhmm完成签到,获得积分10
2秒前
JING完成签到,获得积分10
2秒前
lanheqingniao完成签到,获得积分10
3秒前
俊俊坨完成签到,获得积分10
3秒前
小猫不吃鱼完成签到 ,获得积分10
3秒前
Stella应助一只小西瓜采纳,获得10
4秒前
Stella应助李多多采纳,获得10
4秒前
恋如雪止完成签到,获得积分10
4秒前
倩倩努力搞钱完成签到,获得积分10
4秒前
薄年西完成签到,获得积分10
4秒前
优秀元枫完成签到,获得积分10
4秒前
小新完成签到,获得积分10
5秒前
独木舟完成签到 ,获得积分10
5秒前
NexusExplorer应助糕手采纳,获得10
5秒前
Owen应助Hina采纳,获得10
5秒前
ZK999完成签到,获得积分10
6秒前
mumu发布了新的文献求助10
6秒前
6秒前
Ivy完成签到,获得积分10
6秒前
蒋瑞轩发布了新的文献求助10
6秒前
Anima发布了新的文献求助10
6秒前
xuan完成签到,获得积分10
7秒前
Jin完成签到,获得积分10
7秒前
传奇3应助禾苗采纳,获得10
7秒前
斯文败类应助怕黑的萧采纳,获得10
7秒前
千幻完成签到,获得积分10
7秒前
8秒前
蝉时雨完成签到,获得积分10
8秒前
诺z完成签到,获得积分10
9秒前
嘉星糖完成签到,获得积分10
9秒前
10秒前
xuan发布了新的文献求助10
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585147
求助须知:如何正确求助?哪些是违规求助? 4668950
关于积分的说明 14773671
捐赠科研通 4616972
什么是DOI,文献DOI怎么找? 2530364
邀请新用户注册赠送积分活动 1499158
关于科研通互助平台的介绍 1467659