Porosity prediction from pre-stack seismic data via committee machine with optimized parameters

多孔性 人工神经网络 支持向量机 均方误差 测井 近似误差 算法 相关系数 油田 决定系数 计算机科学 数学 数据挖掘 地质学 统计 机器学习 石油工程 岩土工程
作者
Amin Gholami,Masoud Amirpour,Hamid Reza Ansari,Seyed Mohsen Seyedali,Amir Semnani,Naser Golsanami,Ehsan Heidaryan,Mehdi Ostadhassan
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:210: 110067-110067 被引量:10
标识
DOI:10.1016/j.petrol.2021.110067
摘要

Prediction of porosity from the seismic data via geophysical methods when limited number of wells are available is a challenging task that has high uncertainties. This study aims to construct a hybrid data-driven predictive model to establish a quantitative correlation between seismic pre-stack (SPS) data and the porosity. First, three intelligent models that are optimized by bat-inspired algorithm (BA): optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR) are constructed for relating porosity to the SPS data. Then, to benefit from all individual optimized models, a final hybrid model was built via committee machine (CM) where single models are combined with a proper weight to predict porosity in the reservoir space. This approach is examined on the SPS data from an oil field in the Persian Gulf with a single exploratory well where input parameters (Vp, Vs, and ρ) to the AI models are derived from a two-parameter inversion method. We found that the coefficient of determination, root mean square error, average absolute relative error, and symmetric mean absolute percentage error for the CM are 0.923615, 0.015793, 0.132280, and 0.061310, respectively. Moreover, based on four statistical indexes that are calculated for each model, CM outperformed its individual elements followed by the OSRV. A comprehensive analysis of the results confirms that CM with the OM elements is a superior approach for computing porosity from the SPS in the well and then throughout the entire reservoir volume. This strategy can aid petroleum engineers to have a better forecast of porosity population in the reservoir static model immediately following the data that is obtained from the first exploratory well. Ultimately, successful implementation of this approach will promptly delineate sweet spots that can replace uncertain and complicated conventional geophysical methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xbw发布了新的文献求助10
1秒前
科目三应助LockheedChengdu采纳,获得10
1秒前
杨一乐完成签到,获得积分10
2秒前
整齐夏旋完成签到,获得积分10
2秒前
QinQin发布了新的文献求助10
2秒前
漂亮海蓝完成签到 ,获得积分10
3秒前
3秒前
谦让晓晓完成签到 ,获得积分20
4秒前
7秒前
8秒前
柚子发布了新的文献求助10
9秒前
9秒前
清脆南霜发布了新的文献求助10
9秒前
10秒前
Jasper应助bunny采纳,获得10
11秒前
11秒前
13秒前
科研通AI6.1应助青云采纳,获得30
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
田様应助杨小鸿采纳,获得10
15秒前
Leon_Kim发布了新的文献求助10
15秒前
17秒前
Doctor.TANG完成签到 ,获得积分10
18秒前
充电宝应助杨榆藤采纳,获得10
18秒前
阔达之卉完成签到 ,获得积分10
20秒前
研友_VZG7GZ应助dddd采纳,获得10
20秒前
21秒前
21秒前
22秒前
22秒前
22秒前
爬得飞快的仲文博完成签到,获得积分10
23秒前
nancylan发布了新的文献求助30
26秒前
Orange应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
yanyan应助科研通管家采纳,获得30
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978