Porosity prediction from pre-stack seismic data via committee machine with optimized parameters

多孔性 人工神经网络 支持向量机 均方误差 测井 近似误差 算法 相关系数 油田 决定系数 计算机科学 数学 数据挖掘 地质学 统计 机器学习 石油工程 岩土工程
作者
Amin Gholami,Masoud Amirpour,Hamid Reza Ansari,Seyed Mohsen Seyedali,Amir Semnani,Naser Golsanami,Ehsan Heidaryan,Mehdi Ostadhassan
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:210: 110067-110067 被引量:10
标识
DOI:10.1016/j.petrol.2021.110067
摘要

Prediction of porosity from the seismic data via geophysical methods when limited number of wells are available is a challenging task that has high uncertainties. This study aims to construct a hybrid data-driven predictive model to establish a quantitative correlation between seismic pre-stack (SPS) data and the porosity. First, three intelligent models that are optimized by bat-inspired algorithm (BA): optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR) are constructed for relating porosity to the SPS data. Then, to benefit from all individual optimized models, a final hybrid model was built via committee machine (CM) where single models are combined with a proper weight to predict porosity in the reservoir space. This approach is examined on the SPS data from an oil field in the Persian Gulf with a single exploratory well where input parameters (Vp, Vs, and ρ) to the AI models are derived from a two-parameter inversion method. We found that the coefficient of determination, root mean square error, average absolute relative error, and symmetric mean absolute percentage error for the CM are 0.923615, 0.015793, 0.132280, and 0.061310, respectively. Moreover, based on four statistical indexes that are calculated for each model, CM outperformed its individual elements followed by the OSRV. A comprehensive analysis of the results confirms that CM with the OM elements is a superior approach for computing porosity from the SPS in the well and then throughout the entire reservoir volume. This strategy can aid petroleum engineers to have a better forecast of porosity population in the reservoir static model immediately following the data that is obtained from the first exploratory well. Ultimately, successful implementation of this approach will promptly delineate sweet spots that can replace uncertain and complicated conventional geophysical methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxfang完成签到 ,获得积分10
刚刚
夜未央完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助50
3秒前
安静严青完成签到 ,获得积分10
5秒前
小杨完成签到,获得积分10
11秒前
蓝桉完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
19秒前
健壮惋清完成签到 ,获得积分10
20秒前
浅色西完成签到,获得积分10
22秒前
笑颖完成签到 ,获得积分10
23秒前
wyz完成签到 ,获得积分10
25秒前
26秒前
26秒前
不想看文献完成签到 ,获得积分10
28秒前
29秒前
29秒前
BowieHuang应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
好好应助科研通管家采纳,获得10
30秒前
30秒前
BowieHuang应助科研通管家采纳,获得10
30秒前
好好应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
30秒前
BowieHuang应助科研通管家采纳,获得10
30秒前
好好应助科研通管家采纳,获得10
30秒前
30秒前
啊大大哇发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
33秒前
111完成签到 ,获得积分10
41秒前
neu_zxy1991完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
小白完成签到 ,获得积分10
50秒前
狂野元枫完成签到 ,获得积分10
55秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
monster完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789302
求助须知:如何正确求助?哪些是违规求助? 5718164
关于积分的说明 15474454
捐赠科研通 4917190
什么是DOI,文献DOI怎么找? 2646815
邀请新用户注册赠送积分活动 1594475
关于科研通互助平台的介绍 1548962