Porosity prediction from pre-stack seismic data via committee machine with optimized parameters

多孔性 人工神经网络 支持向量机 均方误差 测井 近似误差 算法 相关系数 油田 决定系数 计算机科学 数学 数据挖掘 地质学 统计 机器学习 石油工程 岩土工程
作者
Amin Gholami,Masoud Amirpour,Hamid Reza Ansari,Seyed Mohsen Seyedali,Amir Semnani,Naser Golsanami,Ehsan Heidaryan,Mehdi Ostadhassan
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:210: 110067-110067 被引量:10
标识
DOI:10.1016/j.petrol.2021.110067
摘要

Prediction of porosity from the seismic data via geophysical methods when limited number of wells are available is a challenging task that has high uncertainties. This study aims to construct a hybrid data-driven predictive model to establish a quantitative correlation between seismic pre-stack (SPS) data and the porosity. First, three intelligent models that are optimized by bat-inspired algorithm (BA): optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR) are constructed for relating porosity to the SPS data. Then, to benefit from all individual optimized models, a final hybrid model was built via committee machine (CM) where single models are combined with a proper weight to predict porosity in the reservoir space. This approach is examined on the SPS data from an oil field in the Persian Gulf with a single exploratory well where input parameters (Vp, Vs, and ρ) to the AI models are derived from a two-parameter inversion method. We found that the coefficient of determination, root mean square error, average absolute relative error, and symmetric mean absolute percentage error for the CM are 0.923615, 0.015793, 0.132280, and 0.061310, respectively. Moreover, based on four statistical indexes that are calculated for each model, CM outperformed its individual elements followed by the OSRV. A comprehensive analysis of the results confirms that CM with the OM elements is a superior approach for computing porosity from the SPS in the well and then throughout the entire reservoir volume. This strategy can aid petroleum engineers to have a better forecast of porosity population in the reservoir static model immediately following the data that is obtained from the first exploratory well. Ultimately, successful implementation of this approach will promptly delineate sweet spots that can replace uncertain and complicated conventional geophysical methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助50
1秒前
慕青应助木木采纳,获得30
2秒前
JamesPei应助飘飘素晴采纳,获得10
4秒前
LSY完成签到,获得积分10
5秒前
Unshouable完成签到,获得积分10
5秒前
jianglili完成签到,获得积分10
5秒前
8023完成签到,获得积分10
5秒前
嘉星糖完成签到,获得积分10
6秒前
6秒前
黄瓜橙橙发布了新的文献求助10
6秒前
bigfish完成签到,获得积分10
9秒前
勤奋尔冬完成签到 ,获得积分10
10秒前
认真真真真真完成签到,获得积分10
12秒前
14秒前
Cell完成签到 ,获得积分10
15秒前
15秒前
zhuxd完成签到,获得积分10
18秒前
加一完成签到,获得积分10
18秒前
gyf完成签到,获得积分10
19秒前
荣浩宇完成签到,获得积分10
19秒前
功不唐捐完成签到,获得积分10
20秒前
和谐的映梦完成签到,获得积分10
20秒前
20秒前
chi完成签到 ,获得积分10
20秒前
清风完成签到,获得积分10
22秒前
晚意完成签到 ,获得积分10
23秒前
莫愁完成签到,获得积分10
23秒前
WittingGU完成签到,获得积分0
24秒前
忙碌的数学人完成签到,获得积分10
26秒前
zmx发布了新的文献求助10
27秒前
28秒前
因为我从来是那样完成签到,获得积分10
28秒前
SDS完成签到 ,获得积分10
28秒前
飘飘素晴完成签到,获得积分10
29秒前
桐桐应助可露丽采纳,获得10
30秒前
杠赛来完成签到,获得积分10
31秒前
黑海不开灯完成签到 ,获得积分10
32秒前
keke完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027