行人
人行横道
运输工程
背景(考古学)
架构人行横道
计算机科学
显示偏好
联营
地理
计量经济学
工程类
数学
人工智能
考古
作者
Julián Arellana,S. Fernández,Miguel Figueroa,Víctor Cantillo
标识
DOI:10.1016/j.trf.2022.01.012
摘要
Considering the high crash rates involving pedestrians on urban roads, it is highly relevant to understanding pedestrian crossing behavior. This paper is the first to combine stated preference (SP) and revealed preference (RP) data to evaluate the impact that individual attributes, trip characteristics, built environment, strategies to prevent unauthorized crossing, and traffic flows have on pedestrians crossing decisions in an urban context. SP and RP surveys were designed and collected in Barranquilla (Colombia) near pedestrian bridges or signalized intersections where direct crossings and a high concentration of pedestrian fatalities related to traffic accidents exist. A logit model was estimated using the data enrichment paradigm. Results show that pedestrians weigh risks and costs when choosing how to cross the road. The trajectories observed in the RP component suggest that people prefer direct crossings; nevertheless, pedestrian bridges and signalized intersections can be attractive alternatives if their location matches the origin or destination of the crossing, and no detour is needed to use them. Waiting time; safety; the fine imposed for jaywalking; personal security, and previous decisions are also variables that influence pedestrian behavior when crossing urban roads. These results can be helpful to urban planners and decision-makers interested in proposing appropriate pedestrian infrastructure. The data pooling technique and the inclusion of a cost-related variable (i.e., fine) allowed computing the willingness to pay and marginal substitution rates for attributes of the built environment and other characteristics associated with the crossing decision. Also, the inclusion of several crossing alternatives and situations allowed assessing pedestrian crossing preferences under different scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI