A new active-learning function for adaptive Polynomial-Chaos Kriging probability density evolution method

概率密度函数 多项式混沌 克里金 数学 应用数学 概率分布 功能(生物学) 熵(时间箭头) 数学优化 多项式的 算法 计算机科学 蒙特卡罗方法 统计 数学分析 进化生物学 量子力学 生物 物理
作者
Tong Zhou,Yongbo Peng
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:106: 86-99 被引量:14
标识
DOI:10.1016/j.apm.2022.01.030
摘要

A new active-learning function is developed to integrate Polynomial-Chaos Kriging with probability density evolution method. First, the relative importance of each representative point to the probability of failure is separately measured, thereby the region of interest is defined for the probability density evolution method, which covers the representative points exerting vital contributions to the probability of failure. Then, a new learning function called the probability density evolution method-oriented information entropy is readily devised based on the information theory, and the stopping condition is defined by specifying a threshold for the learning function values. Two examples are studied to show the efficacy of the adaptive Polynomial-Chaos Kriging probability density evolution method, and the recommended values of two key parameters associated with this new learning function are provided. Moreover, comprehensive comparisons are conducted against several existing reliability methods. The results highlight the advantage of the proposed active-learning function for structural reliability analysis in terms of both computational accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋圆不圆完成签到,获得积分10
刚刚
招财不肥发布了新的文献求助10
1秒前
zxc111发布了新的文献求助10
1秒前
魔幻的从梦完成签到,获得积分10
1秒前
2秒前
Xiaoxiao应助sunyexuan采纳,获得10
3秒前
4秒前
5秒前
淼淼之锋完成签到 ,获得积分10
5秒前
赢赢完成签到 ,获得积分10
5秒前
6秒前
7秒前
科目三应助落落采纳,获得10
9秒前
67发布了新的文献求助10
9秒前
9秒前
溜溜完成签到,获得积分10
9秒前
xixi完成签到 ,获得积分10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
撒上咖啡应助科研通管家采纳,获得10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
琪琪扬扬发布了新的文献求助10
10秒前
sutharsons应助科研通管家采纳,获得30
10秒前
orixero应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
清爽老九应助科研通管家采纳,获得20
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
hui发布了新的文献求助30
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
12秒前
迟大猫应助若狂采纳,获得10
12秒前
11111发布了新的文献求助30
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808