Edge Intelligence: Federated Learning-Based Privacy Protection Framework for Smart Healthcare Systems

计算机科学 计算机安全 边缘计算 差别隐私 边缘设备 信息隐私 上传 人工智能 GSM演进的增强数据速率 机器学习 数据挖掘 万维网 云计算 操作系统
作者
Mahmuda Akter,Nour Moustafa,Timothy Lynar,Imran Razzak
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 5805-5816 被引量:22
标识
DOI:10.1109/jbhi.2022.3192648
摘要

Federated learning methods offer secured monitor services and privacy-preserving paradigms to end-users and organisations in the Internet of Things networks such as smart healthcare systems. Federated learning has been coined to safeguard sensitive data, and its global aggregation is often based on a centralised server. This design is vulnerable to malicious attacks and could be breached by privacy attacks such as inference and free-riding, leading to inefficient training models. Besides, uploaded analysing parameters by patients can reveal private information and the threat of direct manipulation by the central server. To address these issues, we present a three-fold Federated Edge Aggregator, the so-called Edge Intelligence, a federated learning-based privacy protection framework for safeguarding Smart Healthcare Systems at the edge against such privacy attacks. We employ an iteration-based Conventional Neural Network (CNN) model and artificial noise functions to balance privacy protection and model performance. A theoretical convergence bound of Edge Intelligence on the trained federated learning model's loss function is also introduced here. We evaluate and compare the proposed framework with the recently established methods using model performance and privacy budget on popular and recent datasets: MNIST, CIFAR10, STL10, and COVID19 chest x-ray. Finally, the proposed framework achieves 90% accuracy and a high privacy rate demonstrating better performance than the baseline technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ll完成签到,获得积分20
1秒前
1秒前
tkdzjr12345关注了科研通微信公众号
1秒前
jeep先生发布了新的文献求助10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
子卿应助科研通管家采纳,获得20
2秒前
科研通AI2S应助苦行僧采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得30
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
whuhustwit发布了新的文献求助10
3秒前
3秒前
憨憨鱼完成签到,获得积分10
4秒前
翟拂完成签到,获得积分10
4秒前
Rhan发布了新的文献求助10
5秒前
力口氵由发布了新的文献求助10
7秒前
LZH完成签到,获得积分10
9秒前
酷波er应助canglv采纳,获得10
9秒前
彭于晏应助1201采纳,获得10
10秒前
爱听歌代萱完成签到,获得积分10
10秒前
卡戎529完成签到,获得积分10
10秒前
10秒前
云鹏完成签到,获得积分10
10秒前
科研通AI2S应助香蕉长颈鹿采纳,获得10
10秒前
任性翠安发布了新的文献求助10
11秒前
13秒前
13秒前
miqiqi完成签到,获得积分10
14秒前
爆米花应助南楼小阁主采纳,获得10
15秒前
俗签发布了新的文献求助10
15秒前
wwho_O发布了新的文献求助10
17秒前
大福同学完成签到,获得积分10
17秒前
黄阿鹏发布了新的文献求助10
18秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145513
求助须知:如何正确求助?哪些是违规求助? 2796938
关于积分的说明 7822093
捐赠科研通 2453230
什么是DOI,文献DOI怎么找? 1305516
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464