Enhancing pH stability of lysine decarboxylase via rational engineering and its application in cadaverine industrial production

尸体 赖氨酸脱羧酶 生物转化 化学 腐胺 赖氨酸 生物化学 发酵 氨基酸
作者
Siyuan Gao,Alei Zhang,Ding Ma,Kun Zhang,Xiaogang Wang,Xin Wang,Kequan Chen
出处
期刊:Biochemical Engineering Journal [Elsevier]
卷期号:186: 108548-108548 被引量:6
标识
DOI:10.1016/j.bej.2022.108548
摘要

Cadaverine, an important C5 platform compound, is the raw material of polyamides. Under a carbon neutral context, cadaverine bio-production using lysine decarboxylase as a catalyst from the sustainable resource L-lysine is more attractive than chemical synthesis from fossil resources because it is environmentally-friendly and highly efficient. However, the alkaline conditions caused by accumulation of cadaverine decreases lysine decarboxylase activity, which limits its industrial applications. Herein, we aimed to improve cadaverine enzymatic production via enhancing stability of lysine decarboxylase from Escherichia coli (EcCadA) under alkaline pH by rational engineering. Mutations of interfacial disulfide bonds between subunits in the EcCadA decamer, M1 (L89C/L442C), M2 (F102C/L547C), and M3 (V12C/D41C) were chosen. M3 exhibited a 6-fold increase in cadaverine production at pH 10.0. Non-reduced SDS-PAGE analysis demonstrated that the proportion of decamers was greatly increased compared to wild-type enzyme. In addition, molecular dynamics simulations showed that the distance between subunits increased with increased pH, especially in region B. Finally, the fed-batch bioconversion of cadaverine from L-lysine in a 5 L fermenter using M3 by whole-cell catalysis led to 418 g/L cadaverine, which is the highest titer produced to date. This study provided a more efficient enzyme to industrially produce cadaverine with reduced acid use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助陌路采纳,获得10
1秒前
1335804518完成签到 ,获得积分10
2秒前
2秒前
甜甜醉波完成签到,获得积分10
2秒前
科研通AI2S应助卷卷王采纳,获得10
3秒前
可爱的函函应助梦里采纳,获得10
3秒前
沐晴完成签到,获得积分10
4秒前
入夏完成签到,获得积分10
4秒前
4秒前
4秒前
苏州小北发布了新的文献求助10
5秒前
5秒前
snail完成签到,获得积分10
6秒前
劈里啪啦完成签到,获得积分10
6秒前
wanci应助Jasmine采纳,获得10
7秒前
aoxiangcaizi12完成签到,获得积分10
7秒前
ding应助通~采纳,获得30
8秒前
9秒前
Annie发布了新的文献求助10
9秒前
晨曦完成签到,获得积分10
10秒前
十一发布了新的文献求助10
10秒前
顾矜应助Peter采纳,获得30
11秒前
Ayanami完成签到,获得积分10
11秒前
英俊的铭应助ysl采纳,获得30
11秒前
酷波er应助范范采纳,获得10
11秒前
12秒前
Akim应助damian采纳,获得30
12秒前
12秒前
14秒前
番茄炒西红柿完成签到,获得积分10
15秒前
无限安蕾完成签到,获得积分10
15秒前
15秒前
飘逸蘑菇发布了新的文献求助10
16秒前
混沌完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
xg发布了新的文献求助10
18秒前
看看发布了新的文献求助10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794