清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

YOLOX-SAR: High-Precision Object Detection System Based on Visible and Infrared Sensors for SAR Remote Sensing

合成孔径雷达 计算机科学 目标检测 人工智能 计算机视觉 遥感 雷达成像 块(置换群论) 雷达 逆合成孔径雷达 特征(语言学) 方位角 特征提取 模式识别(心理学) 电信 物理 地理 光学 语言学 哲学 几何学 数学
作者
Qiang Guo,Liu Jianing,Mykola Kaliuzhnyi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (17): 17243-17253 被引量:16
标识
DOI:10.1109/jsen.2022.3186889
摘要

The object detection technology for Synthetic Aperture Radar (SAR) image generation is of great significance in signal processing, radar imaging and other fields. SAR image is the image data obtained from the electromagnetic wave echo from the radar to the object after processing the range and the azimuth respectively. However, the sizes of the objects to be detected change dramatically and the detection difficulty increases, because the scattering characteristics of electromagnetic waves have a great influence on SAR images. At the same time, the large areas of background information will contain confused geographical elements, which seriously affect the detection performance. Therefore, we propose the YOLOX-SAR algorithm to solve these problems. Based on YOLOX, we combine the adaptive activation function Meta-ACON with the SPP module in Backbone to improve the feature extraction ability. We also integrate the Convolutional Block Attention Model (CBAM) at FPN to find the attention area in scenes with dense objects. Furthermore, many useful strategies, such as data enhancement and MS-testing, are provided to improve our proposed YOLOX-SAR. Apart from that, in order to objectively demonstrate the competitive performance of YOLOX-SAR, we compare it with other object detection algorithms on the sensor acquisition dataset of NWPU VHR-10. There remain a large amount of research results demonstrating that YOLOX-SAR possesses good performance as well as interpretation ability in SAR image object detection. The mAP of YOLOX-SAR reaches 89.56%, which is 4.04% higher than that of the previous YOLOX algorithm. YOLOX-SAR, as an improved version of YOLO series, can still be detected in real-time and its FPS reaches 67, keeping the characteristic of fast detection speed of the YOLOX series. Experimental results and analysis show that under the complex electromagnetic scattering background, YOLOX-SAR can ensure the authenticity and effectiveness of the dataset collected by the sensors. Meanwhile, YOLOX-SAR ensures a good balance between the accuracy and running time of object detection. Therefore, the algorithm has good detection performance for objects of various sizes in SAR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方白秋完成签到,获得积分10
26秒前
ldd发布了新的文献求助10
1分钟前
Lucas应助翟半仙采纳,获得10
2分钟前
墨言无殇完成签到,获得积分10
3分钟前
huvy完成签到 ,获得积分10
3分钟前
内向的白玉完成签到 ,获得积分10
6分钟前
6分钟前
翟半仙发布了新的文献求助10
6分钟前
6分钟前
turui完成签到 ,获得积分10
6分钟前
jyy应助晶杰采纳,获得10
6分钟前
脑洞疼应助科研通管家采纳,获得10
7分钟前
翟半仙发布了新的文献求助20
7分钟前
fuueer完成签到 ,获得积分10
7分钟前
lixuebin完成签到 ,获得积分10
7分钟前
上官若男应助LJYang采纳,获得30
7分钟前
翟半仙完成签到,获得积分10
8分钟前
gy完成签到,获得积分10
9分钟前
华仔应助去去去去采纳,获得30
9分钟前
9分钟前
10分钟前
去去去去发布了新的文献求助30
10分钟前
方琼燕完成签到 ,获得积分10
10分钟前
段誉完成签到 ,获得积分10
10分钟前
yanhua完成签到,获得积分20
10分钟前
10分钟前
桐桐应助Mine采纳,获得10
11分钟前
11分钟前
11分钟前
Mine发布了新的文献求助10
11分钟前
11分钟前
Ava应助Mine采纳,获得50
11分钟前
晶杰发布了新的文献求助10
13分钟前
hongxuezhi完成签到,获得积分10
13分钟前
13分钟前
Mine发布了新的文献求助50
13分钟前
晶杰完成签到 ,获得积分10
14分钟前
大个应助雅樱采纳,获得10
14分钟前
Hello应助要减肥的婷冉采纳,获得10
14分钟前
要减肥的婷冉完成签到,获得积分10
14分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142742
求助须知:如何正确求助?哪些是违规求助? 2793633
关于积分的说明 7807045
捐赠科研通 2449903
什么是DOI,文献DOI怎么找? 1303531
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601335