YOLOX-SAR: High-Precision Object Detection System Based on Visible and Infrared Sensors for SAR Remote Sensing

合成孔径雷达 计算机科学 目标检测 人工智能 计算机视觉 遥感 雷达成像 块(置换群论) 雷达 逆合成孔径雷达 特征(语言学) 方位角 特征提取 模式识别(心理学) 电信 物理 地理 光学 语言学 哲学 几何学 数学
作者
Qiang Guo,Liu Jianing,Mykola Kaliuzhnyi
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (17): 17243-17253 被引量:16
标识
DOI:10.1109/jsen.2022.3186889
摘要

The object detection technology for Synthetic Aperture Radar (SAR) image generation is of great significance in signal processing, radar imaging and other fields. SAR image is the image data obtained from the electromagnetic wave echo from the radar to the object after processing the range and the azimuth respectively. However, the sizes of the objects to be detected change dramatically and the detection difficulty increases, because the scattering characteristics of electromagnetic waves have a great influence on SAR images. At the same time, the large areas of background information will contain confused geographical elements, which seriously affect the detection performance. Therefore, we propose the YOLOX-SAR algorithm to solve these problems. Based on YOLOX, we combine the adaptive activation function Meta-ACON with the SPP module in Backbone to improve the feature extraction ability. We also integrate the Convolutional Block Attention Model (CBAM) at FPN to find the attention area in scenes with dense objects. Furthermore, many useful strategies, such as data enhancement and MS-testing, are provided to improve our proposed YOLOX-SAR. Apart from that, in order to objectively demonstrate the competitive performance of YOLOX-SAR, we compare it with other object detection algorithms on the sensor acquisition dataset of NWPU VHR-10. There remain a large amount of research results demonstrating that YOLOX-SAR possesses good performance as well as interpretation ability in SAR image object detection. The mAP of YOLOX-SAR reaches 89.56%, which is 4.04% higher than that of the previous YOLOX algorithm. YOLOX-SAR, as an improved version of YOLO series, can still be detected in real-time and its FPS reaches 67, keeping the characteristic of fast detection speed of the YOLOX series. Experimental results and analysis show that under the complex electromagnetic scattering background, YOLOX-SAR can ensure the authenticity and effectiveness of the dataset collected by the sensors. Meanwhile, YOLOX-SAR ensures a good balance between the accuracy and running time of object detection. Therefore, the algorithm has good detection performance for objects of various sizes in SAR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助妖孽的二狗采纳,获得10
刚刚
1秒前
yao完成签到,获得积分10
1秒前
2秒前
3秒前
kma发布了新的文献求助10
3秒前
3秒前
4秒前
orixero应助reuslee采纳,获得10
4秒前
科研通AI5应助么么黑采纳,获得10
5秒前
5秒前
5秒前
baiyun发布了新的文献求助10
6秒前
酷波er应助无名小卒每文采纳,获得10
6秒前
8秒前
8秒前
SYLH应助称心不尤采纳,获得10
8秒前
小巧南露发布了新的文献求助10
9秒前
9秒前
Akim应助洁净亦巧采纳,获得30
9秒前
10秒前
可可发布了新的文献求助10
10秒前
10秒前
热情无心发布了新的文献求助10
11秒前
文艺的梦秋完成签到,获得积分10
11秒前
11秒前
mayberichard发布了新的文献求助10
12秒前
12秒前
samvega发布了新的文献求助10
12秒前
chaserlife发布了新的文献求助10
12秒前
科研通AI5应助饱满小兔子采纳,获得10
13秒前
LBJ23完成签到,获得积分20
13秒前
13秒前
超级柜子发布了新的文献求助10
13秒前
斯文败类应助科研的牲口采纳,获得10
14秒前
ZQY完成签到,获得积分10
14秒前
英俊的铭应助英俊萧采纳,获得10
14秒前
grace完成签到 ,获得积分10
14秒前
14秒前
12发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
Essays on Employer Engagement in Education 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3691582
求助须知:如何正确求助?哪些是违规求助? 3242159
关于积分的说明 9841581
捐赠科研通 2954039
什么是DOI,文献DOI怎么找? 1619500
邀请新用户注册赠送积分活动 765985
科研通“疑难数据库(出版商)”最低求助积分说明 739773