Multitask Deep Learning for Segmentation and Lumbosacral Spine Inspection

分割 计算机科学 人工智能 深度学习 卷积神经网络 人工神经网络 骶骨 腰骶关节 图像分割 模式识别(心理学) 任务(项目管理) 反向传播 计算机视觉 机器学习 工程类 解剖 医学 系统工程
作者
Van Luan Tran,Huei-Yung Lin,Hsaio-Wei Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:3
标识
DOI:10.1109/tim.2022.3184341
摘要

Multi-task learning has achieved notable progress in many medical applications. In this paper, we propose a multi-task neural network, MRNet, for segmentation and spinal parameter inspection. It is developed based on the multi-path convolutional neural network for the robust detection of obscure regions on X-ray images. The proposed MRNet has two branches. One is for the segmentation of lumbar vertebrae, sacrum, and femoral heads. It shares the main features with the second branch for detection and classification by supervised learning. The output of the second branch is used to estimate the parameters for lumbosacral spine inspection. We conduct this research on our dataset collected and annotated by doctors for model training and performance evaluation. The datasets are used to train our MRNet as well as other networks for performance evaluation. Compared to the state-of-the-art techniques, the proposed MRNet is capable of X-ray image segmentation and parameter estimation with very limited training data. The results have demonstrated the feasibility of our MRNet for the segmentation of lumbar vertebrae, as well as the automated parameter prediction for lumbosacral spine inspection. Code is available at https://github.com/LuanTran07/BiLUnet-Lumbar-Spine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天天晴完成签到,获得积分10
1秒前
霸气的洋葱完成签到,获得积分10
1秒前
ltr完成签到,获得积分10
1秒前
李李李娟发布了新的文献求助20
1秒前
舒心的曼寒完成签到,获得积分10
1秒前
Akim应助LmaPN7采纳,获得20
2秒前
科研通AI2S应助轩辕德地采纳,获得10
2秒前
qiu完成签到,获得积分10
2秒前
我要发论文完成签到,获得积分10
4秒前
5秒前
在水一方应助标致的书竹采纳,获得10
5秒前
6秒前
6秒前
嘟嘟请让一让完成签到,获得积分10
6秒前
7秒前
彭于晏应助少少采纳,获得10
7秒前
8秒前
8秒前
baekhyun完成签到,获得积分10
9秒前
海光发布了新的文献求助30
9秒前
10秒前
10秒前
10秒前
无辜箴发布了新的文献求助10
10秒前
11秒前
小羊羊发布了新的文献求助10
12秒前
happyfei完成签到,获得积分10
12秒前
代代完成签到 ,获得积分10
12秒前
WHY发布了新的文献求助10
13秒前
14秒前
131完成签到,获得积分10
14秒前
123发布了新的文献求助10
14秒前
FAN凡完成签到,获得积分20
14秒前
14秒前
SuperFAN发布了新的文献求助20
15秒前
wanci应助无辜箴采纳,获得10
15秒前
打打应助要减肥的香芦采纳,获得10
15秒前
领导范儿应助melenda采纳,获得10
16秒前
美好曼荷发布了新的文献求助20
16秒前
西门子云完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308005
求助须知:如何正确求助?哪些是违规求助? 2941518
关于积分的说明 8503953
捐赠科研通 2616072
什么是DOI,文献DOI怎么找? 1429372
科研通“疑难数据库(出版商)”最低求助积分说明 663724
邀请新用户注册赠送积分活动 648679