Statistical Analysis of Quantitative Peptidomics and Peptide-Level Proteomics Data with Prostar

蛋白质组学 计算机科学 定量蛋白质组学 计算生物学 统计分析 化学 生物 统计 生物化学 数学 基因
作者
Marianne Tardif,Enora Fremy,Anne-Marie Hesse,Thomas Bürger,Yohann Couté,Samuel Wieczorek
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 163-196 被引量:3
标识
DOI:10.1007/978-1-0716-1967-4_9
摘要

Prostar is a software tool dedicated to the processing of quantitative data resulting from mass spectrometry-based label-free proteomics. Practically, once biological samples have been analyzed by bottom-up proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, notably by means of precursor ion chromatogram integration. From that point, the classical workflows aggregate these pieces of peptide-level information to infer protein-level identities and amounts. Finally, protein abundances can be statistically analyzed to find out proteins that are significantly differentially abundant between compared conditions. Prostar original workflow has been developed based on this strategy. However, recent works have demonstrated that processing peptide-level information is often more accurate when searching for differentially abundant proteins, as the aggregation step tends to hide some of the data variabilities and biases. As a result, Prostar has been extended by workflows that manage peptide-level data, and this protocol details their use. The first one, deemed "peptidomics," implies that the differential analysis is conducted at peptide level, independently of the peptide-to-protein relationship. The second workflow proposes to aggregate the peptide abundances after their preprocessing (i.e., after filtering, normalization, and imputation), so as to minimize the amount of protein-level preprocessing prior to differential analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助浅笑采纳,获得10
刚刚
manjusaka发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
欧阳懿完成签到 ,获得积分10
3秒前
yinfan完成签到,获得积分10
3秒前
CodeCraft应助iiing采纳,获得10
3秒前
万能图书馆应助iiing采纳,获得10
3秒前
CipherSage应助iiing采纳,获得10
3秒前
打打应助iiing采纳,获得10
3秒前
彭于晏应助iiing采纳,获得10
3秒前
希望天下0贩的0应助iiing采纳,获得10
3秒前
3秒前
脑洞疼应助iiing采纳,获得10
3秒前
丫丫完成签到,获得积分10
3秒前
BowieHuang应助iiing采纳,获得10
3秒前
3秒前
4秒前
wly发布了新的文献求助10
4秒前
miao3718发布了新的文献求助10
5秒前
5秒前
传统的松鼠完成签到,获得积分10
5秒前
东白湖的无奈完成签到,获得积分10
5秒前
竹叶青完成签到,获得积分10
6秒前
Naomi发布了新的文献求助10
6秒前
酷酷的友灵完成签到,获得积分20
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
ghostR发布了新的文献求助10
7秒前
7秒前
8秒前
一路硕博发布了新的文献求助10
8秒前
赘婿应助快乐的思真采纳,获得10
8秒前
沉默毛衣发布了新的文献求助10
8秒前
王桐发布了新的文献求助10
8秒前
gezid完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851