Statistical Analysis of Quantitative Peptidomics and Peptide-Level Proteomics Data with Prostar

蛋白质组学 计算机科学 定量蛋白质组学 计算生物学 统计分析 化学 生物 统计 生物化学 数学 基因
作者
Marianne Tardif,Enora Fremy,Anne-Marie Hesse,Thomas Bürger,Yohann Couté,Samuel Wieczorek
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 163-196 被引量:3
标识
DOI:10.1007/978-1-0716-1967-4_9
摘要

Prostar is a software tool dedicated to the processing of quantitative data resulting from mass spectrometry-based label-free proteomics. Practically, once biological samples have been analyzed by bottom-up proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, notably by means of precursor ion chromatogram integration. From that point, the classical workflows aggregate these pieces of peptide-level information to infer protein-level identities and amounts. Finally, protein abundances can be statistically analyzed to find out proteins that are significantly differentially abundant between compared conditions. Prostar original workflow has been developed based on this strategy. However, recent works have demonstrated that processing peptide-level information is often more accurate when searching for differentially abundant proteins, as the aggregation step tends to hide some of the data variabilities and biases. As a result, Prostar has been extended by workflows that manage peptide-level data, and this protocol details their use. The first one, deemed "peptidomics," implies that the differential analysis is conducted at peptide level, independently of the peptide-to-protein relationship. The second workflow proposes to aggregate the peptide abundances after their preprocessing (i.e., after filtering, normalization, and imputation), so as to minimize the amount of protein-level preprocessing prior to differential analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遥望星空应助搞点学术采纳,获得10
刚刚
晴天完成签到 ,获得积分10
刚刚
1秒前
hzk发布了新的文献求助10
1秒前
1秒前
2秒前
回火青年发布了新的文献求助30
3秒前
3秒前
3秒前
kk发布了新的文献求助30
5秒前
5秒前
6秒前
科研通AI6.1应助白白采纳,获得10
6秒前
Claire_Xiang应助标致翠安采纳,获得20
6秒前
Aloysia发布了新的文献求助10
7秒前
yys10l完成签到,获得积分10
8秒前
MRu发布了新的文献求助50
8秒前
8秒前
CipherSage应助阿伟采纳,获得10
9秒前
丘比特应助Xin采纳,获得10
9秒前
小柴发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
12秒前
今后应助jixia采纳,获得10
12秒前
23关闭了23文献求助
12秒前
搞点学术完成签到 ,获得积分10
13秒前
14秒前
15秒前
HANXIA完成签到,获得积分10
15秒前
15秒前
16秒前
研友_nxy9XZ完成签到,获得积分10
17秒前
17秒前
17秒前
cyz完成签到,获得积分10
18秒前
ChenChen发布了新的文献求助10
20秒前
苏小安发布了新的文献求助10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465