命名实体识别
计算机科学
稳健性(进化)
粒度
人工智能
自然语言处理
特征提取
组分(热力学)
命名实体
钥匙(锁)
信息抽取
语言模型
实体链接
特征(语言学)
特征工程
情报检索
深度学习
语言学
哲学
物理
经济
操作系统
化学
管理
基因
热力学
生物化学
计算机安全
知识库
任务(项目管理)
作者
Jueyang Wang,LI Shu-zhen,Edward Agyemang-Duah,Xingyu Feng,Xu Chun,Yuao Ji,Junqiang Liu
标识
DOI:10.1109/ccwc54503.2022.9720911
摘要
Named Entity Recognition (NER) is to identify pre-defined types of entities (such as people, organizations, locations) from texts. NER is a key component of information retrieval, relationship extraction and other tasks in practice. However, traditional entity recognition models have a series of problems: high cost of artificial feature design, weak model robustness, and coarse granularity of entities. To solve these problems, we propose a model called MacBERT-Attn-BiLSTM-CRF based on pre-trained language models. The experiments on a fine-grained Chinese NER dataset show that our model outperforms existing models significantly.
科研通智能强力驱动
Strongly Powered by AbleSci AI