相变
杰纳斯
相(物质)
材料科学
化学物理
单层
过渡金属
Crystal(编程语言)
凝聚态物理
结晶学
纳米技术
化学
物理
生物化学
催化作用
有机化学
计算机科学
程序设计语言
作者
Öznur Demirkol,Cem Sevik,İlker Demiroğlu
摘要
Two-dimensional Transition Metal Dichalcogenides (TMDs) possessing extraordinary physical properties at reduced dimensionality have attracted interest due to their promise in electronic and optical device applications. However, TMD monolayers can show a broad range of different properties depending on their crystal phase; for example, H phases are usually semiconductors, while the T phases are metallic. Thus, controlling phase transitions has become critical for device applications. In this study, the energetically low-lying crystal structures of pristine and Janus TMDs are investigated by using ab initio Nudged Elastic Band and molecular dynamics simulations to provide a general explanation for their phase stability and transition properties. Across all materials investigated, the T phase is found to be the least stable and the H phase is the most stable except for WTe2, while the T' and T'' phases change places according to the TMD material. The transition energy barriers are found to be large enough to hint that even the higher energy phases are unlikely to undergo a phase transition to a more stable phase if they can be achieved except for the least stable T phase, which has zero barrier towards the T' phase. Indeed, in molecular dynamics simulations the thermodynamically least stable T phase transformed into the T' phase spontaneously while in general no other phase transition was observed up to 2100 K for the other three phases. Thus, the examined T', T'' and H phases were shown to be mostly stable and do not readily transform into another phase. Furthermore, so-called mixed phase calculations considered in our study explain the experimentally observed lateral hybrid structures and point out that the coexistence of different phases is strongly stable against phase transitions. Indeed, stable complex structures such as metal-semiconductor-metal architectures, which have immense potential to be used in future device applications, are also possible based on our investigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI