Predicting 30-Day Readmission Risk for Patients With Chronic Obstructive Pulmonary Disease Through a Federated Machine Learning Architecture on Findable, Accessible, Interoperable, and Reusable (FAIR) Data: Development and Validation Study

互操作性 计算机科学 观察研究 医疗保健 医学 人工智能 机器学习 万维网 经济增长 病理 经济
作者
Celia Álvarez-Romero,Alicia Martínez-García,Jara Ternero Vega,Pablo Díaz-Jiménez,Carlos Jimènez-Juan,María Dolores Nieto‐Martín,Esther Román-Villarán,Lutz Freitag,Darijo Bokan,Sanja Hromiš,Jelena Djekić Malbaša,Suzana Beslać,Bojan Zarić,Mert Gençtürk,Ali Anıl Sınacı,Manuel Ollero Baturone,Carlos Luís Parra-Calderón
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:10 (6): e35307-e35307 被引量:5
标识
DOI:10.2196/35307
摘要

Owing to the nature of health data, their sharing and reuse for research are limited by legal, technical, and ethical implications. In this sense, to address that challenge and facilitate and promote the discovery of scientific knowledge, the Findable, Accessible, Interoperable, and Reusable (FAIR) principles help organizations to share research data in a secure, appropriate, and useful way for other researchers.The objective of this study was the FAIRification of existing health research data sets and applying a federated machine learning architecture on top of the FAIRified data sets of different health research performing organizations. The entire FAIR4Health solution was validated through the assessment of a federated model for real-time prediction of 30-day readmission risk in patients with chronic obstructive pulmonary disease (COPD).The application of the FAIR principles on health research data sets in 3 different health care settings enabled a retrospective multicenter study for the development of specific federated machine learning models for the early prediction of 30-day readmission risk in patients with COPD. This predictive model was generated upon the FAIR4Health platform. Finally, an observational prospective study with 30 days follow-up was conducted in 2 health care centers from different countries. The same inclusion and exclusion criteria were used in both retrospective and prospective studies.Clinical validation was demonstrated through the implementation of federated machine learning models on top of the FAIRified data sets from different health research performing organizations. The federated model for predicting the 30-day hospital readmission risk was trained using retrospective data from 4.944 patients with COPD. The assessment of the predictive model was performed using the data of 100 recruited (22 from Spain and 78 from Serbia) out of 2070 observed (records viewed) patients during the observational prospective study, which was executed from April 2021 to September 2021. Significant accuracy (0.98) and precision (0.25) of the predictive model generated upon the FAIR4Health platform were observed. Therefore, the generated prediction of 30-day readmission risk was confirmed in 87% (87/100) of cases.Implementing a FAIR data policy in health research performing organizations to facilitate data sharing and reuse is relevant and needed, following the discovery, access, integration, and analysis of health research data. The FAIR4Health project proposes a technological solution in the health domain to facilitate alignment with the FAIR principles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙梁子完成签到,获得积分10
刚刚
核桃花生奶兔完成签到 ,获得积分10
1秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
2秒前
3秒前
孙奕发布了新的文献求助10
3秒前
xiaotian_fan完成签到,获得积分10
3秒前
5秒前
5秒前
科研通AI2S应助laochen采纳,获得10
5秒前
盘尼西林发布了新的文献求助10
5秒前
迟大猫应助专心搞学术采纳,获得10
6秒前
8秒前
孙奕完成签到,获得积分10
9秒前
9秒前
俟天晴完成签到,获得积分10
9秒前
淡定问芙发布了新的文献求助30
10秒前
12秒前
Lewis完成签到,获得积分10
13秒前
orixero应助TranYan采纳,获得10
13秒前
猪猪hero发布了新的文献求助10
15秒前
16秒前
今后应助333采纳,获得10
17秒前
pu发布了新的文献求助10
18秒前
Akim应助梓榆采纳,获得10
19秒前
劼大大完成签到,获得积分10
19秒前
最优解完成签到 ,获得积分20
20秒前
20秒前
通~发布了新的文献求助10
20秒前
一段乐多完成签到,获得积分10
21秒前
21秒前
21秒前
给我找完成签到,获得积分10
22秒前
桐桐应助Yuki0616采纳,获得10
22秒前
小马甲应助鸣隐采纳,获得10
22秒前
ycd完成签到,获得积分10
23秒前
ark861023完成签到,获得积分10
23秒前
淡定问芙完成签到,获得积分10
23秒前
斯文败类应助惠惠采纳,获得10
24秒前
24秒前
Meowly完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794