Emerging early diagnostic methods for acute kidney injury

急性肾损伤 医学 重症监护医学 生物标志物 生物医学 尿量 肌酐 内科学 生物信息学 生物化学 生物 化学
作者
Zuoxiu Xiao,Qiong Huang,Yuqi Yang,Min Liu,Qiaohui Chen,Jia Huang,Yuting Xiang,Xingyu Long,Tianjiao Zhao,Xiaoyuan Wang,Xiaoyu Zhu,Shiqi Tu,Kelong Ai
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:12 (6): 2963-2986 被引量:51
标识
DOI:10.7150/thno.71064
摘要

Many factors such as trauma and COVID-19 cause acute kidney injury (AKI).Late AKI have a very high incidence and mortality rate.Early diagnosis of AKI provides a critical therapeutic time window for AKI treatment to prevent progression to chronic renal failure.However, the current clinical detection based on creatinine and urine output isn't effective in diagnosing early AKI.In recent years, the early diagnosis of AKI has made great progress with the advancement of information technology, nanotechnology, and biomedicine.These emerging methods are mainly divided into two aspects: First, predicting AKI through models construct by machine learning; Second, early diagnosis of AKI through detection of newly-discovered early biomarkers.Currently, these methods have shown great potential and become an attractive tool for the early diagnosis of AKI.Therefore, it is very important to discuss and summarize these methods for the early diagnosis of AKI.In this review, we first systematically summarize the application of machine learning in AKI prediction algorithms and specific scenarios.In addition, we introduce the key role of early biomarkers in the progress of AKI, and then comprehensively summarize the application of emerging detection technologies for early AKI.Finally, we discuss current challenges and prospects of machine learning and biomarker detection.The review is expected to provide new insights for early diagnosis of AKI, and provided important inspiration for the design of early diagnosis of other major diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
5秒前
青山落日秋月春风完成签到,获得积分10
6秒前
xiaodaiduyan发布了新的文献求助10
7秒前
柿子吖完成签到,获得积分10
7秒前
从容的完成签到 ,获得积分10
7秒前
刘洪均完成签到,获得积分10
9秒前
334niubi666发布了新的文献求助10
9秒前
Hh发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
澡雪完成签到,获得积分10
11秒前
834198189发布了新的文献求助10
12秒前
lpydz完成签到,获得积分10
13秒前
安陌煜发布了新的文献求助150
13秒前
zhouleiwang完成签到,获得积分10
14秒前
刘洪均发布了新的文献求助10
14秒前
834198189完成签到,获得积分10
21秒前
希望天下0贩的0应助er采纳,获得10
22秒前
25秒前
w_yF完成签到,获得积分20
25秒前
欧阳璐完成签到,获得积分10
26秒前
27秒前
27秒前
橘子发布了新的文献求助10
28秒前
32秒前
32秒前
weiquanli发布了新的文献求助10
36秒前
37秒前
小陈科研发布了新的文献求助20
38秒前
李桥溪发布了新的文献求助10
38秒前
夏大雨发布了新的文献求助30
39秒前
klb13应助科研通管家采纳,获得10
41秒前
香蕉觅云应助科研通管家采纳,获得10
41秒前
丰知然应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
丰知然应助科研通管家采纳,获得10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308488
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506015
捐赠科研通 2616798
什么是DOI,文献DOI怎么找? 1429796
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649019