HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images

计算机科学 块(置换群论) 人工智能 特征(语言学) 深度学习 分割 编码(集合论) 管道(软件) 光学(聚焦) 模式识别(心理学) 源代码 操作系统 集合(抽象数据类型) 语言学 哲学 物理 几何学 数学 光学 程序设计语言
作者
Hanhong Zheng,Maoguo Gong,Tongfei Liu,Fenlong Jiang,Tao Zhan,Di Lu,Mingyang Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:129: 108717-108717 被引量:90
标识
DOI:10.1016/j.patcog.2022.108717
摘要

Building change detection (BCD) recently can be handled well under the booming of deep-learning based computer vision techniques. However, segmentation and recognition for objects with sharper boundaries still suffer from the poorly acquired high frequency information, which can result in the deteriorated annotation of building boundaries in BCD. To better obtain the high frequency pattern under the deep learning pipeline, we propose a high frequency attention-guided Siamese network (HFA-Net) in which a novel built-in high frequency attention block (HFAB) is applied. HFA-Net is designed to enhance high frequency information of buildings via HFAB which is composed of two main stages, i.e., the spatial-wise attention (SA) and the high frequency enhancement (HF). The SA firstly guides the model to search and focus on buildings, and HF is employed afterwards to highlight the high frequency information of the input feature maps. With high frequency information of buildings enhanced by HFAB, HFA-Net is able to better detect the edges of changed buildings, so as to improve the performance of BCD. Our proposed method is evaluated on three widely-used public datasets, i.e., WHU-CD, LEVIR-CD, and Google dataset. Remarkable experimental results on these datasets indicate that our proposed method can better detect edges of changed buildings and shows a better performance. The source code will be released at: https://github.com/HaiXing-1998/HFANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunlihao完成签到,获得积分10
刚刚
所所应助dada采纳,获得10
刚刚
梦nv孩发布了新的文献求助10
刚刚
明理夏槐发布了新的文献求助10
1秒前
一定长发布了新的文献求助20
1秒前
1秒前
研友_5Z4ZA5完成签到,获得积分10
1秒前
忧伤的书白完成签到,获得积分10
1秒前
完美世界应助科研通管家采纳,获得30
2秒前
大模型应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得30
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
火星上的灵竹完成签到,获得积分10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
linye应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得30
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
淡淡的豁应助科研通管家采纳,获得30
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
万能图书馆应助陈远青采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
Struggle完成签到,获得积分10
4秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479