HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images

计算机科学 块(置换群论) 人工智能 特征(语言学) 深度学习 分割 编码(集合论) 管道(软件) 光学(聚焦) 模式识别(心理学) 源代码 操作系统 集合(抽象数据类型) 语言学 哲学 物理 几何学 数学 光学 程序设计语言
作者
Hanhong Zheng,Maoguo Gong,Tongfei Liu,Fenlong Jiang,Tao Zhan,Di Lu,Mingyang Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:129: 108717-108717 被引量:62
标识
DOI:10.1016/j.patcog.2022.108717
摘要

Building change detection (BCD) recently can be handled well under the booming of deep-learning based computer vision techniques. However, segmentation and recognition for objects with sharper boundaries still suffer from the poorly acquired high frequency information, which can result in the deteriorated annotation of building boundaries in BCD. To better obtain the high frequency pattern under the deep learning pipeline, we propose a high frequency attention-guided Siamese network (HFA-Net) in which a novel built-in high frequency attention block (HFAB) is applied. HFA-Net is designed to enhance high frequency information of buildings via HFAB which is composed of two main stages, i.e., the spatial-wise attention (SA) and the high frequency enhancement (HF). The SA firstly guides the model to search and focus on buildings, and HF is employed afterwards to highlight the high frequency information of the input feature maps. With high frequency information of buildings enhanced by HFAB, HFA-Net is able to better detect the edges of changed buildings, so as to improve the performance of BCD. Our proposed method is evaluated on three widely-used public datasets, i.e., WHU-CD, LEVIR-CD, and Google dataset. Remarkable experimental results on these datasets indicate that our proposed method can better detect edges of changed buildings and shows a better performance. The source code will be released at: https://github.com/HaiXing-1998/HFANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林云夕完成签到,获得积分10
刚刚
samar完成签到,获得积分10
1秒前
Vera61发布了新的文献求助10
3秒前
金扇扇完成签到,获得积分10
4秒前
打打应助Singularity采纳,获得10
4秒前
qzliyulin发布了新的文献求助10
4秒前
JUDGEsir完成签到,获得积分10
5秒前
勤恳的纸飞机完成签到,获得积分10
5秒前
研友_nPKAEL完成签到,获得积分10
6秒前
6秒前
zz完成签到,获得积分10
7秒前
平凡之路完成签到,获得积分10
8秒前
998877剑指完成签到,获得积分10
8秒前
9秒前
大模型应助金扇扇采纳,获得10
9秒前
10秒前
12秒前
海洋完成签到,获得积分10
12秒前
13秒前
Owen应助zzw采纳,获得10
13秒前
Patrick0614发布了新的文献求助10
14秒前
bin发布了新的文献求助20
14秒前
飞飞完成签到 ,获得积分10
14秒前
田様应助尊敬薯片采纳,获得10
15秒前
15秒前
15秒前
小贝发布了新的文献求助50
16秒前
夕阳殆晖发布了新的文献求助10
16秒前
17秒前
lirongcas发布了新的文献求助10
17秒前
脏脏鲤完成签到 ,获得积分10
18秒前
共享精神应助Vera61采纳,获得30
18秒前
20秒前
一顿鸡米花完成签到,获得积分10
20秒前
从容芮应助默默焱采纳,获得30
20秒前
22秒前
逃之夭夭发布了新的文献求助30
22秒前
23秒前
24秒前
爆米花应助L同学采纳,获得10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229144
求助须知:如何正确求助?哪些是违规求助? 2876975
关于积分的说明 8197101
捐赠科研通 2544315
什么是DOI,文献DOI怎么找? 1374291
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621720