已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence algorithms for the recognition of Brugada type 1 pattern on standard 12-leads ECG

医学 Brugada综合征 阿玛林 人工智能 算法 机器学习 内科学 考试(生物学) 心脏病学 计算机科学 生物 古生物学
作者
F Vozzi,GM Dimitri,Marcello Piacenti,Giulio Zucchelli,G Solarino,Martina Nesti,P Pieragnoli,Claudio Gallicchio,E Persiani,Ming Ma,Andrea De Micheli
出处
期刊:Europace [Oxford University Press]
卷期号:24 (Supplement_1) 被引量:4
标识
DOI:10.1093/europace/euac053.558
摘要

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This research project is funded by Tuscany Region Background/Introduction Electrocardiograms (ECGs) are rapidly moving from analog to digital versions. Consequently, a series of automatic analyses of standard 12-lead ECGs are attracting interest for their ability to support clinicians in the automatic recognition of specific features associated with different cardiac diseases [2]. Artificial Intelligence applications and Machine Learning (ML) algorithms have gained much attention in the last years for their ability to figure out patterns from data independently, without being explicitly taught rules. Peculiar features define the ECGs of patients with Brugada Syndrome (BrS); however, ambiguities still exist for the correct diagnosis of BrS and discrimination with respect to other pathologies. Purpose The BrAID (Brugada syndrome and Artificial Intelligence applications to Diagnosis) project aims to develop an innovative system for diagnosing Type 1 BrS based on ECG pattern recognition through the application of ML algorithms. In this work, an application of Echo State Networks (ESN), a type of Recurrent Neural Network (RNN), for the diagnosis of BrS from ECG is presented. Methods After approval from the Local Ethical Committees, 12-lead ECGs were obtained in patients enrolled in 5 Centers diagnosed with typical spontaneous Type 1 pattern (coved) (group A, 81 patients). Baseline ECG was also collected in patients undergoing the ajmaline test, classified as positive (group B, 37 patients) or negative (group C, 14 patients) according to test results. 174 patients with no clinical and familial history of arrhythmias were considered controls (group D). Data were collected from 4 beats extracted from the ECGs as input to the ESN. The datasets obtained in the different groups were used for the ESN model’s training and assessment (testing) through a double cross-validation approach. Results As shown in Table 1, the performances using three leads (V1, V2, V3) or V2 only were compared. The algorithm performance was assessed in all the datasets (group A+B+C+D) and in spontaneous BrS (group A) and controls (group D). A good accuracy (79.21%) was seen when the three leads were considered for groups A and D only; the best test set accuracy (80.20%) was obtained in the case in which V2 only was used as input in all the datasets. Conclusion(s) In this work, a novel system for diagnosing Type 1 BrS using an ESN approach was developed. Our preliminary results show that this ML model is able to detect ECG patterns associated with Type 1 BrS with good and comparable accuracy both when three leads (79.21% ) or V2 only (80.20%) were analyzed. The future availability of larger datasets could improve the model performance, increasing the ESN potentialities as a clinical support system tool to be used in everyday clinical practice. Table 1. The accuracy, specificity, and sensitivity reported for each dataset group are obtained through double cross-validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faststar完成签到,获得积分10
刚刚
7秒前
7秒前
10秒前
CUREME发布了新的文献求助10
12秒前
13秒前
JJ完成签到,获得积分10
14秒前
oy发布了新的文献求助10
14秒前
俏皮安双发布了新的文献求助10
15秒前
酷波er应助Tiscen采纳,获得10
15秒前
等于几都行完成签到 ,获得积分10
15秒前
Akim应助Judy采纳,获得10
18秒前
葱花和香菜应助顺心冬易采纳,获得10
19秒前
20秒前
俏皮安双完成签到,获得积分10
22秒前
沉淀中的黄绿医生完成签到 ,获得积分20
24秒前
oy完成签到,获得积分10
25秒前
Anxia发布了新的文献求助10
25秒前
25秒前
ysea发布了新的文献求助10
26秒前
独特的兰完成签到,获得积分10
27秒前
30秒前
yuhui发布了新的文献求助10
30秒前
清脆一寡完成签到 ,获得积分10
31秒前
小蘑菇应助秋听寒采纳,获得10
34秒前
废物自救完成签到,获得积分10
34秒前
Tiscen发布了新的文献求助10
35秒前
35秒前
废物自救发布了新的文献求助10
41秒前
pathway完成签到 ,获得积分10
41秒前
47秒前
49秒前
Orange应助急急吉吉采纳,获得10
49秒前
君君欧发布了新的文献求助10
52秒前
高兴的万宝路完成签到,获得积分10
52秒前
52秒前
扣扣登陆完成签到 ,获得积分10
53秒前
凌墨墨完成签到,获得积分10
56秒前
umil发布了新的文献求助10
58秒前
58秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3283721
求助须知:如何正确求助?哪些是违规求助? 2921414
关于积分的说明 8406142
捐赠科研通 2592961
什么是DOI,文献DOI怎么找? 1413555
科研通“疑难数据库(出版商)”最低求助积分说明 658527
邀请新用户注册赠送积分活动 640307