A deep learning-based method for deviation status detection in intelligent conveyor belt system

带式输送机 人工智能 输送带 深度学习 计算机科学 汽车工程 机器学习 工程类 模式识别(心理学) 环境科学 机械工程
作者
Mengchao Zhang,Kai Jiang,Yueshuai Cao,Meixuan Li,Nini Hao,Yuan Zhang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:363: 132575-132575 被引量:27
标识
DOI:10.1016/j.jclepro.2022.132575
摘要

Belt deviation is one of the most common faults of belt conveyors . Its occurrence not only causes materials to be scattered and affect the environment but also results in abnormal wear of equipment and increased energy consumption, which severely affects the green production and sustainable development of enterprises. Therefore, the rapid and timely detection of the deviation state of conveyor belts is of great significance for ensuring the safe and efficient operation of transportation systems. In view of the disadvantages of the available technology in terms of detection speed, a novel conveyor belt deviation monitoring method based on deep learning is proposed in this paper, which is realized by improving the output results of a general target detection network, YOLOv5, such that the network is enhanced with the ability to detect straight lines instead of bounding box , which effectively solves the problem of rapid feature extraction and deviation judgment of the edges of the conveyor belt of a belt conveyor against a complex background. Experiments show that the proposed method balances detection accuracy and speed, with a detection accuracy of up to 90% and a detection speed of up to 67 frames per second (FPS), and shows good real-time performance. The method greatly simplifies the process of straight-line feature extraction in complex environments, helps realize the intellectualization of conveyors, and achieves unmanned operation and energy savings in coal mines to realize green, energy-saving, and sustainable development while ensuring safe and efficient transportation. • General target detection network-based straight line detection method. • Efficient conveyor belt edge detection under complex scenes. • New detection method of belt deviation to ensure safe and clean transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橴暘完成签到,获得积分10
2秒前
2秒前
Emmmm发布了新的文献求助10
3秒前
zho关闭了zho文献求助
5秒前
qqqqqqqqqqqq完成签到,获得积分10
5秒前
haruka发布了新的文献求助10
6秒前
小禾发布了新的文献求助10
6秒前
6秒前
kiwi完成签到 ,获得积分10
7秒前
缪尔岚完成签到,获得积分10
7秒前
qqqqqqqqqqqq发布了新的文献求助10
9秒前
gxnu123完成签到,获得积分20
9秒前
lbt完成签到 ,获得积分10
12秒前
莫鱼完成签到,获得积分10
14秒前
15秒前
情怀应助高高的寻梅采纳,获得30
16秒前
19秒前
皮卡噼里啪啦完成签到 ,获得积分10
19秒前
mage发布了新的文献求助10
19秒前
yyr发布了新的文献求助10
21秒前
opticsLM完成签到,获得积分10
22秒前
QQLL完成签到,获得积分10
23秒前
23秒前
周胎胎完成签到,获得积分10
24秒前
mbf发布了新的文献求助10
25秒前
25秒前
26秒前
丘比特应助yyr采纳,获得10
26秒前
26秒前
26秒前
会撒娇的诺言完成签到,获得积分10
26秒前
Emmmm完成签到,获得积分10
27秒前
29秒前
CodeCraft应助TYF采纳,获得10
30秒前
高艳慧发布了新的文献求助10
31秒前
lemon完成签到,获得积分10
34秒前
34秒前
科研一号完成签到 ,获得积分10
35秒前
purple1212发布了新的文献求助10
35秒前
zhuangxiaocheng完成签到 ,获得积分20
36秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388