Origin of structural degradation in Li-rich layered oxide cathode

阴极 材料科学 电压 电化学 电极 纳米技术 格子(音乐) 离子 氧化物 化学物理 化学 电气工程 物理 冶金 物理化学 工程类 有机化学 声学
作者
Tongchao Liu,Jiajie Liu,Luxi Li,Yu Lei,Jiecheng Diao,Tao Zhou,Shunning Li,Alvin Dai,Wenguang Zhao,Shenyang Xu,Yang Ren,Liguang Wang,Tianpin Wu,Rui Qi,Yinguo Xiao,Jiaxin Zheng,Wonsuk Cha,Ross Harder,Ian Robinson,Jianguo Wen
出处
期刊:Nature [Nature Portfolio]
卷期号:606 (7913): 305-312 被引量:389
标识
DOI:10.1038/s41586-022-04689-y
摘要

Li- and Mn-rich (LMR) cathode materials that utilize both cation and anion redox can yield substantial increases in battery energy density1–3. However, although voltage decay issues cause continuous energy loss and impede commercialization, the prerequisite driving force for this phenomenon remains a mystery3–6 Here, with in situ nanoscale sensitive coherent X-ray diffraction imaging techniques, we reveal that nanostrain and lattice displacement accumulate continuously during operation of the cell. Evidence shows that this effect is the driving force for both structure degradation and oxygen loss, which trigger the well-known rapid voltage decay in LMR cathodes. By carrying out micro- to macro-length characterizations that span atomic structure, the primary particle, multiparticle and electrode levels, we demonstrate that the heterogeneous nature of LMR cathodes inevitably causes pernicious phase displacement/strain, which cannot be eliminated by conventional doping or coating methods. We therefore propose mesostructural design as a strategy to mitigate lattice displacement and inhomogeneous electrochemical/structural evolutions, thereby achieving stable voltage and capacity profiles. These findings highlight the significance of lattice strain/displacement in causing voltage decay and will inspire a wave of efforts to unlock the potential of the broad-scale commercialization of LMR cathode materials. Diffractive imaging of an important class of battery electrodes during cycling shows that lattice strain is a crucial yet overlooked factor that contributes to voltage fade over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
海马非马完成签到 ,获得积分10
1秒前
2秒前
Wuhuhu应助闪闪芷波采纳,获得10
2秒前
CodeCraft应助ALinaLi采纳,获得10
2秒前
韶雅山完成签到,获得积分10
3秒前
梧桐雨210发布了新的文献求助10
4秒前
科研通AI2S应助可爱的菠萝采纳,获得20
4秒前
量子星尘发布了新的文献求助10
5秒前
trust完成签到,获得积分10
6秒前
6秒前
Laisy完成签到,获得积分10
6秒前
111完成签到,获得积分10
6秒前
7秒前
晨曦完成签到,获得积分10
8秒前
sill完成签到,获得积分10
9秒前
9秒前
微风完成签到,获得积分10
9秒前
痴情的雁易完成签到,获得积分10
10秒前
Ling完成签到,获得积分10
10秒前
my完成签到,获得积分10
11秒前
12秒前
13秒前
借一颗糖发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
124完成签到,获得积分10
15秒前
星辰大海应助rjj001022采纳,获得10
15秒前
微不足道发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
ALinaLi发布了新的文献求助10
17秒前
18秒前
fsm发布了新的文献求助20
18秒前
未月初二完成签到,获得积分10
18秒前
19秒前
sue发布了新的文献求助100
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771