The role of Fe3O4@biochar as electron shuttle in enhancing the biodegradation of gaseous para-xylene by aerobic surfactant secreted strains

生物炭 生物降解 化学 傅里叶变换红外光谱 电子转移 扫描电子显微镜 X射线光电子能谱 核化学 化学工程 环境化学 有机化学 材料科学 热解 复合材料 工程类
作者
Yan Wang,Shungang Wan,Weili Yu,Dan Yuan,Lei Sun
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:438: 129475-129475 被引量:20
标识
DOI:10.1016/j.jhazmat.2022.129475
摘要

To study the role of electron shuttles in accelerating the biodegradation of volatile organic compounds (VOCs) and provide theoretical support for purification of waste gas containing PX, two self-producing biosurfactant strains were used to improve solubility, and the magnetic Fe3O4@biochar composites were prepared as electron shuttles to accelerate extracellular electron transfer during the process of para-xylene (PX) biodegradation. The composites were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The biodegradation time of PX by Enterobacter sp. HN01 and Klebsiella sp. HN02 decreased from 192 h to 12 h and 120 to 12 h, and approximately 93.75% and 90.00% of the removal times were saved after the addition of the composites. Furthermore, the effects of Fe3O4@biochar on the bacterial biosurfactant secretion, self-enzyme activity, and bacterial growth inhibition by PX were explored. The electron transport capacity of Fe3O4@biochar was 4.583 mmol·e-/g detected by mediated electrochemical reduction and mediated electrochemical oxidation, and possible electron transport pathways were revealed. The possible products of PX biodegradation by HN01 and HN02 were determined through gas chromatography-mass spectrometry. The molecular structure of PX was deduced through density functional theory calculation to validate the key product. Results indicated that Fe3O4@biochar can be used as an electronic shuttle to accelerate extracellular electron transfer and significantly improve VOCs removal rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
学习猴发布了新的文献求助10
1秒前
充电宝应助炙热的如柏采纳,获得10
2秒前
所所应助qzaima采纳,获得10
2秒前
米兰达完成签到 ,获得积分0
3秒前
xg发布了新的文献求助10
5秒前
Loooong应助Ni采纳,获得10
6秒前
6秒前
WZ0904发布了新的文献求助10
6秒前
顾矜应助博ge采纳,获得10
8秒前
8秒前
Lotus发布了新的文献求助10
9秒前
10秒前
仁爱仙人掌完成签到,获得积分10
12秒前
ywang发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
ewqw关注了科研通微信公众号
15秒前
曦小蕊完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
奋斗灵波发布了新的文献求助10
17秒前
药学牛马发布了新的文献求助10
17秒前
17秒前
科研通AI5应助WZ0904采纳,获得10
18秒前
叶未晞yi发布了新的文献求助10
19秒前
ipeakkka发布了新的文献求助10
20秒前
Jzhang应助迷人的映雁采纳,获得10
20秒前
20秒前
zzz完成签到,获得积分10
21秒前
21秒前
小安发布了新的文献求助10
21秒前
22秒前
叶未晞yi完成签到,获得积分10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得30
24秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824