STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction

可解释性 深度学习 计算机科学 领域(数学) 流量(计算机网络) 人工神经网络 人工智能 过程(计算) 机器学习 边距(机器学习) 工业工程 工程类 数学 计算机安全 纯数学 操作系统
作者
Jiahao Ji,Jingyuan Wang,Zhe Jiang,Jiawei Jiang,Hu Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (4): 4048-4056 被引量:30
标识
DOI:10.1609/aaai.v36i4.20322
摘要

High-performance traffic flow prediction model designing, a core technology of Intelligent Transportation System, is a long-standing but still challenging task for industrial and academic communities. The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field. In the literature, physics-based methods can usually provide a clear interpretation of the dynamic process of traffic flow systems but are with limited accuracy, while data-driven methods, especially deep learning with black-box structures, can achieve improved performance but can not be fully trusted due to lack of a reasonable physical basis. To bridge the gap between purely data-driven and physics-driven approaches, we propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework. Specifically, we assume the traffic flow on road networks is driven by a latent potential energy field (like water flows are driven by the gravity field), and model the spatio-temporal dynamic process of the potential energy field as a differential equation network. STDEN absorbs both the performance advantage of data-driven models and the interpretability of physics-based models, so is named a physics-guided prediction model. Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin. A case study further verifies that STDEN can capture the mechanism of urban traffic and generate accurate predictions with physical meaning. The proposed framework of differential equation network modeling may also cast light on other similar applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何书易发布了新的文献求助10
刚刚
烟花应助zh采纳,获得10
1秒前
DEFEND完成签到,获得积分10
2秒前
2秒前
无花果应助爱笑的巧凡采纳,获得10
3秒前
3秒前
啾啾尼泊尔完成签到,获得积分10
3秒前
大个应助FF采纳,获得10
4秒前
不配.应助幽一采纳,获得10
4秒前
qym完成签到,获得积分10
4秒前
Mimi完成签到,获得积分20
5秒前
Frank发布了新的文献求助50
5秒前
11发布了新的文献求助10
6秒前
帕克发布了新的文献求助10
8秒前
9秒前
宁nn完成签到,获得积分10
10秒前
桃子发布了新的文献求助10
11秒前
11秒前
细心的大叔完成签到,获得积分10
12秒前
12秒前
李健的粉丝团团长应助11采纳,获得10
13秒前
13秒前
和谐的土豆完成签到,获得积分10
14秒前
光亮的夜香完成签到,获得积分20
15秒前
15秒前
情怀应助悦悦采纳,获得10
17秒前
18秒前
Singularity应助帕克采纳,获得20
19秒前
发财发布了新的文献求助10
20秒前
20秒前
ninini完成签到,获得积分20
21秒前
22秒前
23秒前
23秒前
彭于晏应助PSCs采纳,获得10
24秒前
zh发布了新的文献求助10
25秒前
Yziii应助你の雷霸霸采纳,获得20
25秒前
25秒前
26秒前
zqy发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323