清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction

可解释性 深度学习 计算机科学 领域(数学) 流量(计算机网络) 人工神经网络 人工智能 过程(计算) 机器学习 边距(机器学习) 工业工程 工程类 数学 计算机安全 纯数学 操作系统
作者
Jiahao Ji,Jingyuan Wang,Zhe Jiang,Jiawei Jiang,Hu Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (4): 4048-4056 被引量:30
标识
DOI:10.1609/aaai.v36i4.20322
摘要

High-performance traffic flow prediction model designing, a core technology of Intelligent Transportation System, is a long-standing but still challenging task for industrial and academic communities. The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field. In the literature, physics-based methods can usually provide a clear interpretation of the dynamic process of traffic flow systems but are with limited accuracy, while data-driven methods, especially deep learning with black-box structures, can achieve improved performance but can not be fully trusted due to lack of a reasonable physical basis. To bridge the gap between purely data-driven and physics-driven approaches, we propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework. Specifically, we assume the traffic flow on road networks is driven by a latent potential energy field (like water flows are driven by the gravity field), and model the spatio-temporal dynamic process of the potential energy field as a differential equation network. STDEN absorbs both the performance advantage of data-driven models and the interpretability of physics-based models, so is named a physics-guided prediction model. Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin. A case study further verifies that STDEN can capture the mechanism of urban traffic and generate accurate predictions with physical meaning. The proposed framework of differential equation network modeling may also cast light on other similar applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小梦发布了新的文献求助20
7秒前
小马甲应助小梦采纳,获得10
26秒前
大胆的碧菡完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助150
35秒前
1分钟前
不晓天发布了新的文献求助10
1分钟前
香蕉觅云应助bxb采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小梦发布了新的文献求助10
1分钟前
yy发布了新的文献求助10
1分钟前
bxb发布了新的文献求助10
1分钟前
bxb完成签到,获得积分10
1分钟前
轻松小张完成签到,获得积分0
1分钟前
kean1943完成签到,获得积分10
1分钟前
欢喜的跳跳糖完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
张小陈完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助小梦采纳,获得10
2分钟前
zzhui完成签到,获得积分10
2分钟前
2分钟前
安琪琪完成签到 ,获得积分10
2分钟前
2分钟前
拾石子完成签到 ,获得积分10
2分钟前
2分钟前
closer完成签到 ,获得积分10
2分钟前
Raul完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
naczx完成签到,获得积分0
3分钟前
ww完成签到,获得积分10
3分钟前
3分钟前
xiaozou55完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
嘟嘟嘟嘟完成签到 ,获得积分10
4分钟前
捉迷藏完成签到,获得积分0
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957082
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111267
捐赠科研通 3234174
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264