STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction

可解释性 深度学习 计算机科学 领域(数学) 流量(计算机网络) 人工神经网络 人工智能 过程(计算) 机器学习 边距(机器学习) 工业工程 工程类 数学 计算机安全 纯数学 操作系统
作者
Jiahao Ji,Jingyuan Wang,Zhe Jiang,Jiawei Jiang,Hu Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (4): 4048-4056 被引量:64
标识
DOI:10.1609/aaai.v36i4.20322
摘要

High-performance traffic flow prediction model designing, a core technology of Intelligent Transportation System, is a long-standing but still challenging task for industrial and academic communities. The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field. In the literature, physics-based methods can usually provide a clear interpretation of the dynamic process of traffic flow systems but are with limited accuracy, while data-driven methods, especially deep learning with black-box structures, can achieve improved performance but can not be fully trusted due to lack of a reasonable physical basis. To bridge the gap between purely data-driven and physics-driven approaches, we propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework. Specifically, we assume the traffic flow on road networks is driven by a latent potential energy field (like water flows are driven by the gravity field), and model the spatio-temporal dynamic process of the potential energy field as a differential equation network. STDEN absorbs both the performance advantage of data-driven models and the interpretability of physics-based models, so is named a physics-guided prediction model. Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin. A case study further verifies that STDEN can capture the mechanism of urban traffic and generate accurate predictions with physical meaning. The proposed framework of differential equation network modeling may also cast light on other similar applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guo发布了新的文献求助10
刚刚
1秒前
思源应助路遥采纳,获得10
1秒前
2秒前
充电宝应助康康采纳,获得10
2秒前
吞吞发布了新的文献求助30
3秒前
11发布了新的文献求助10
3秒前
张旭发布了新的文献求助10
3秒前
列苑苑完成签到,获得积分10
4秒前
liran12319发布了新的文献求助10
4秒前
5秒前
jia完成签到,获得积分10
7秒前
厚积关注了科研通微信公众号
7秒前
9秒前
Jasper应助张旭采纳,获得10
9秒前
9秒前
wanci应助甜蜜的道天采纳,获得10
9秒前
yy完成签到,获得积分20
9秒前
9秒前
9秒前
科研通AI6应助liran12319采纳,获得10
11秒前
小罗发布了新的文献求助10
11秒前
整齐茗完成签到,获得积分10
11秒前
Owen应助曾经问雁采纳,获得10
12秒前
赘婿应助天亮了采纳,获得10
12秒前
12秒前
12秒前
13秒前
14秒前
嘟嘟嘟发布了新的文献求助10
15秒前
15秒前
桐桐应助饱满板栗采纳,获得10
16秒前
16秒前
嘻嘻哈哈应助WILD采纳,获得10
17秒前
CodeCraft应助77采纳,获得10
18秒前
CWJ完成签到,获得积分20
18秒前
18秒前
18秒前
19秒前
吞吞完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914