STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction

可解释性 深度学习 计算机科学 领域(数学) 流量(计算机网络) 人工神经网络 人工智能 过程(计算) 机器学习 边距(机器学习) 工业工程 工程类 数学 计算机安全 纯数学 操作系统
作者
Jiahao Ji,Jingyuan Wang,Zhe Jiang,Jiawei Jiang,Hu Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (4): 4048-4056 被引量:85
标识
DOI:10.1609/aaai.v36i4.20322
摘要

High-performance traffic flow prediction model designing, a core technology of Intelligent Transportation System, is a long-standing but still challenging task for industrial and academic communities. The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field. In the literature, physics-based methods can usually provide a clear interpretation of the dynamic process of traffic flow systems but are with limited accuracy, while data-driven methods, especially deep learning with black-box structures, can achieve improved performance but can not be fully trusted due to lack of a reasonable physical basis. To bridge the gap between purely data-driven and physics-driven approaches, we propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework. Specifically, we assume the traffic flow on road networks is driven by a latent potential energy field (like water flows are driven by the gravity field), and model the spatio-temporal dynamic process of the potential energy field as a differential equation network. STDEN absorbs both the performance advantage of data-driven models and the interpretability of physics-based models, so is named a physics-guided prediction model. Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin. A case study further verifies that STDEN can capture the mechanism of urban traffic and generate accurate predictions with physical meaning. The proposed framework of differential equation network modeling may also cast light on other similar applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助炎燚采纳,获得10
1秒前
闪闪的雨柏完成签到,获得积分10
2秒前
科研通AI6应助shengsheng采纳,获得10
3秒前
3秒前
科研通AI2S应助weixin112233采纳,获得10
3秒前
酷波er应助May采纳,获得10
3秒前
4秒前
4秒前
爱吃米线发布了新的文献求助10
4秒前
郑浩龙完成签到,获得积分10
4秒前
4秒前
Jane_Xin发布了新的文献求助10
5秒前
79完成签到,获得积分10
6秒前
ll完成签到,获得积分10
6秒前
6秒前
小卡拉米应助黎明采纳,获得10
6秒前
XiaoYuuu完成签到,获得积分10
6秒前
FashionBoy应助喂喂喂采纳,获得10
7秒前
Lei完成签到,获得积分10
7秒前
饭米粒发布了新的文献求助10
10秒前
10秒前
魔音甜菜完成签到,获得积分10
10秒前
ankang完成签到,获得积分10
10秒前
10秒前
11秒前
度帕明完成签到,获得积分10
12秒前
Jasper应助粗心的无剑采纳,获得10
12秒前
FashionBoy应助甜蜜的松思采纳,获得10
12秒前
13秒前
迅速的谷菱关注了科研通微信公众号
13秒前
13秒前
ankang发布了新的文献求助10
14秒前
14秒前
liliping发布了新的文献求助10
14秒前
加百莉完成签到,获得积分10
15秒前
lxp完成签到,获得积分10
15秒前
Song完成签到,获得积分10
15秒前
Apei发布了新的文献求助10
16秒前
喵咪西西完成签到,获得积分10
16秒前
勇哥发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524