STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction

可解释性 深度学习 计算机科学 领域(数学) 流量(计算机网络) 人工神经网络 人工智能 过程(计算) 机器学习 边距(机器学习) 工业工程 工程类 数学 计算机安全 纯数学 操作系统
作者
Jiahao Ji,Jingyuan Wang,Zhe Jiang,Jiawei Jiang,Hu Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (4): 4048-4056 被引量:85
标识
DOI:10.1609/aaai.v36i4.20322
摘要

High-performance traffic flow prediction model designing, a core technology of Intelligent Transportation System, is a long-standing but still challenging task for industrial and academic communities. The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field. In the literature, physics-based methods can usually provide a clear interpretation of the dynamic process of traffic flow systems but are with limited accuracy, while data-driven methods, especially deep learning with black-box structures, can achieve improved performance but can not be fully trusted due to lack of a reasonable physical basis. To bridge the gap between purely data-driven and physics-driven approaches, we propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework. Specifically, we assume the traffic flow on road networks is driven by a latent potential energy field (like water flows are driven by the gravity field), and model the spatio-temporal dynamic process of the potential energy field as a differential equation network. STDEN absorbs both the performance advantage of data-driven models and the interpretability of physics-based models, so is named a physics-guided prediction model. Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin. A case study further verifies that STDEN can capture the mechanism of urban traffic and generate accurate predictions with physical meaning. The proposed framework of differential equation network modeling may also cast light on other similar applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助邱晓文采纳,获得10
1秒前
2秒前
2秒前
风清扬应助言非离采纳,获得30
2秒前
舒适寒松发布了新的文献求助10
3秒前
YAYA完成签到,获得积分10
6秒前
6秒前
叨叨完成签到 ,获得积分10
6秒前
小包发布了新的文献求助10
6秒前
舒心凡应助ffffwj2024采纳,获得30
7秒前
图图完成签到,获得积分20
7秒前
寻123完成签到,获得积分10
7秒前
7秒前
pluto应助探险朵拉妈咪_dora采纳,获得10
8秒前
咚咚咚发布了新的文献求助10
8秒前
yxq发布了新的文献求助10
9秒前
122发布了新的文献求助10
10秒前
SccS完成签到,获得积分10
12秒前
于是乎完成签到 ,获得积分10
14秒前
122完成签到,获得积分20
14秒前
皮皮龙OVO发布了新的文献求助10
16秒前
邱晓文完成签到 ,获得积分20
18秒前
momo应助干净铭采纳,获得10
19秒前
bkagyin应助魁梧的仰采纳,获得10
19秒前
19秒前
20秒前
21秒前
yexyz完成签到,获得积分10
21秒前
Never stall完成签到,获得积分10
23秒前
zimo完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
26秒前
从容的狗完成签到 ,获得积分20
27秒前
uuuu发布了新的文献求助10
27秒前
28秒前
小马甲应助学不完了采纳,获得10
29秒前
30秒前
现代姒完成签到,获得积分10
30秒前
ssk完成签到,获得积分10
31秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693692
求助须知:如何正确求助?哪些是违规求助? 5093905
关于积分的说明 15212233
捐赠科研通 4850531
什么是DOI,文献DOI怎么找? 2601836
邀请新用户注册赠送积分活动 1553651
关于科研通互助平台的介绍 1511610