STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction

可解释性 深度学习 计算机科学 领域(数学) 流量(计算机网络) 人工神经网络 人工智能 过程(计算) 机器学习 边距(机器学习) 工业工程 工程类 数学 计算机安全 纯数学 操作系统
作者
Jiahao Ji,Jingyuan Wang,Zhe Jiang,Jiawei Jiang,Hu Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (4): 4048-4056 被引量:64
标识
DOI:10.1609/aaai.v36i4.20322
摘要

High-performance traffic flow prediction model designing, a core technology of Intelligent Transportation System, is a long-standing but still challenging task for industrial and academic communities. The lack of integration between physical principles and data-driven models is an important reason for limiting the development of this field. In the literature, physics-based methods can usually provide a clear interpretation of the dynamic process of traffic flow systems but are with limited accuracy, while data-driven methods, especially deep learning with black-box structures, can achieve improved performance but can not be fully trusted due to lack of a reasonable physical basis. To bridge the gap between purely data-driven and physics-driven approaches, we propose a physics-guided deep learning model named Spatio-Temporal Differential Equation Network (STDEN), which casts the physical mechanism of traffic flow dynamics into a deep neural network framework. Specifically, we assume the traffic flow on road networks is driven by a latent potential energy field (like water flows are driven by the gravity field), and model the spatio-temporal dynamic process of the potential energy field as a differential equation network. STDEN absorbs both the performance advantage of data-driven models and the interpretability of physics-based models, so is named a physics-guided prediction model. Experiments on three real-world traffic datasets in Beijing show that our model outperforms state-of-the-art baselines by a significant margin. A case study further verifies that STDEN can capture the mechanism of urban traffic and generate accurate predictions with physical meaning. The proposed framework of differential equation network modeling may also cast light on other similar applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
327完成签到,获得积分10
刚刚
外向果汁完成签到,获得积分10
刚刚
小余同学完成签到,获得积分10
1秒前
Lee完成签到 ,获得积分10
1秒前
赵宇宙发布了新的文献求助10
1秒前
2秒前
Geist完成签到,获得积分10
2秒前
Daviddd关注了科研通微信公众号
3秒前
3秒前
3秒前
4秒前
英俊的铭应助xqh采纳,获得10
6秒前
6秒前
小番茄完成签到 ,获得积分10
7秒前
饱满南松发布了新的文献求助10
7秒前
FengYun发布了新的文献求助10
7秒前
7秒前
8秒前
于其言发布了新的文献求助20
9秒前
zzzzz完成签到,获得积分10
9秒前
光亮亦竹完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
张安安完成签到,获得积分10
11秒前
无语的千秋应助刘芸若诗采纳,获得10
11秒前
kaiqiang完成签到,获得积分10
12秒前
茫123456完成签到,获得积分10
13秒前
13秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
无极微光应助科研通管家采纳,获得20
14秒前
chenqiumu应助科研通管家采纳,获得20
14秒前
orixero应助科研通管家采纳,获得10
14秒前
打打应助科研通管家采纳,获得10
14秒前
浮游应助清爽的夜安采纳,获得10
14秒前
14秒前
Ava应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
chenqiumu应助科研通管家采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505274
求助须知:如何正确求助?哪些是违规求助? 4600815
关于积分的说明 14474557
捐赠科研通 4534974
什么是DOI,文献DOI怎么找? 2485092
邀请新用户注册赠送积分活动 1468177
关于科研通互助平台的介绍 1440669