动态光散射
化学
纳米颗粒
傅里叶变换红外光谱
原子转移自由基聚合
透射电子显微镜
化学工程
光谱学
聚合物
纳米技术
聚合
材料科学
有机化学
量子力学
物理
工程类
作者
Ruixia Liu,Tingting Ding,Pingping Deng,Xiaofan Yan,Fuquan Xiong,Jienan Chen,Zhiping Wu
摘要
This work was carried out in order to broaden the application field of lignin and improve its additional value. The degraded deep eutectic solvent lignin-grafted poly(N-vinyl caprolactam) (DES-lignin-g-PNVCL) was synthesized by using modified DES-lignin and NVCL via activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP). Aspirin was coated with DES-lignin-g-PNVCL through self-assembly by an ethanol/water anti-solvent method to obtain lignin thermosensitive polymer nanoparticle coated aspirin (aspirin@LTNP). X-ray electron spectroscopy (XPS), elemental analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and ultraviolet visible spectroscopy (UV) were used to characterize the composition, structure and morphology of DES-lignin-g-PNVCL and aspirin@LTNP. The releasing behavior of aspirin@LTNP at different temperatures and pH values was investigated. The safety was evaluated by cytotoxicity tests. The results indicated that aspirin@LTNP was mainly accumulated by the hydrophobic effect and π-π interaction in the process of self-assembly, and its morphology was an ellipsoid stacked layer by layer. The aspirin@LTNP hydrophilic chains were increased and had externally hydrophilic and internally hydrophobic structures. The particle size decreased slightly during the self-assembly process. The red-shift occurred at the π-π interaction wavelength of the lignin aromatic ring, which indicated a physical coating process. The coating rate of aspirin@LTNP was 88.87%. Aspirin@LTNP showed an obvious temperature response; the 96 h cumulative release rate at the LCST was 73.75 ± 1.16%, while the 96 h cumulative release rate above the LCST was 28.10 ± 0.92%. The 96 h cumulative release rate was 63.21 ± 0.57% at pH = 1.5 and 49.56 ± 0.48% at pH = 7.4. The dosage of aspirin@LTNP used in the experiment was safe. This study provided a strategy for drug coating and controlled release.
科研通智能强力驱动
Strongly Powered by AbleSci AI