亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Growing Binary Activation Network: A Novel Deep Learning Model With Dynamic Architecture

MNIST数据库 计算机科学 建筑 人工智能 天基建筑 冗余(工程) 网络体系结构 深度学习 人工神经网络 二进制数 过程(计算) 任务(项目管理) 功能(生物学) 机器学习 参考体系结构 软件体系结构 软件 工程类 数学 艺术 计算机安全 算术 系统工程 进化生物学 视觉艺术 生物 程序设计语言 操作系统
作者
Ze-Yang Zhang,Yidong Chen,Changle Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 624-633 被引量:4
标识
DOI:10.1109/tnnls.2022.3176027
摘要

For a deep learning model, the network architecture is crucial as a model with inappropriate architecture often suffers from performance degradation or parameter redundancy. However, it is experiential and difficult to find the appropriate architecture for a certain application. To tackle this problem, we propose a novel deep learning model with dynamic architecture, named self-growing binary activation network (SGBAN), which can extend the design of a fully connected network (FCN) progressively, resulting in a more compact architecture with higher performance on a certain task. This constructing process is more efficient than neural architecture search methods that train mass of networks to search for the optimal one. Concretely, the training technique of SGBAN is based on the function-preserving transformations that can expand the architecture and combine the information in the new data without neglecting the knowledge learned in the previous steps. The experimental results on four different classification tasks, i.e., Iris, MNIST, CIFAR-10, and CIFAR-100, demonstrate the effectiveness of SGBAN. On the one hand, SGBAN achieves competitive accuracy when compared with the FCN composed of the same architecture, which indicates that the new training technique has the equivalent optimization ability as the traditional optimization methods. On the other hand, the architecture generated by SGBAN achieves 0.59% improvements of accuracy, with only 33.44% parameters when compared with the FCNs composed of manual design architectures, i.e., 500+150 hidden units, on MNIST. Furthermore, we demonstrate that replacing the fully connected layers of the well-trained VGG-19 with SGBAN can gain a slightly improved performance with less than 1% parameters on all these tasks. Finally, we show that the proposed method can conduct the incremental learning tasks and outperform the three outstanding incremental learning methods, i.e., learning without forgetting, elastic weight consolidation, and gradient episodic memory, on both the incremental learning tasks on Disjoint MNIST and Disjoint CIFAR-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emanon发布了新的文献求助10
7秒前
从容芮应助桃子爱学习采纳,获得30
10秒前
Emanon完成签到,获得积分10
13秒前
李健应助科研通管家采纳,获得10
26秒前
37秒前
kuoping完成签到,获得积分0
1分钟前
2分钟前
GingerF应助科研通管家采纳,获得50
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
浮游应助DFS采纳,获得10
2分钟前
2分钟前
CRUSADER完成签到,获得积分10
3分钟前
3分钟前
xt完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
科研通AI6应助LBB采纳,获得10
4分钟前
华仔应助HYX采纳,获得10
5分钟前
5分钟前
HYX完成签到,获得积分10
5分钟前
5分钟前
6分钟前
HYX发布了新的文献求助10
6分钟前
顾矜应助HYX采纳,获得10
6分钟前
6分钟前
沉默御姐完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
yangshu发布了新的文献求助10
7分钟前
7分钟前
7分钟前
HYX发布了新的文献求助10
8分钟前
Suraim完成签到,获得积分10
8分钟前
闻巷雨完成签到 ,获得积分10
8分钟前
李爱国应助luo1采纳,获得10
8分钟前
二十一发布了新的文献求助10
8分钟前
Alisha完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078373
求助须知:如何正确求助?哪些是违规求助? 4297135
关于积分的说明 13387869
捐赠科研通 4119849
什么是DOI,文献DOI怎么找? 2256294
邀请新用户注册赠送积分活动 1260569
关于科研通互助平台的介绍 1194218