Self-Growing Binary Activation Network: A Novel Deep Learning Model With Dynamic Architecture

MNIST数据库 计算机科学 建筑 人工智能 天基建筑 冗余(工程) 网络体系结构 深度学习 人工神经网络 二进制数 过程(计算) 任务(项目管理) 功能(生物学) 机器学习 参考体系结构 软件体系结构 软件 工程类 数学 艺术 计算机安全 算术 系统工程 进化生物学 视觉艺术 生物 程序设计语言 操作系统
作者
Ze-Yang Zhang,Yidong Chen,Changle Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 624-633 被引量:4
标识
DOI:10.1109/tnnls.2022.3176027
摘要

For a deep learning model, the network architecture is crucial as a model with inappropriate architecture often suffers from performance degradation or parameter redundancy. However, it is experiential and difficult to find the appropriate architecture for a certain application. To tackle this problem, we propose a novel deep learning model with dynamic architecture, named self-growing binary activation network (SGBAN), which can extend the design of a fully connected network (FCN) progressively, resulting in a more compact architecture with higher performance on a certain task. This constructing process is more efficient than neural architecture search methods that train mass of networks to search for the optimal one. Concretely, the training technique of SGBAN is based on the function-preserving transformations that can expand the architecture and combine the information in the new data without neglecting the knowledge learned in the previous steps. The experimental results on four different classification tasks, i.e., Iris, MNIST, CIFAR-10, and CIFAR-100, demonstrate the effectiveness of SGBAN. On the one hand, SGBAN achieves competitive accuracy when compared with the FCN composed of the same architecture, which indicates that the new training technique has the equivalent optimization ability as the traditional optimization methods. On the other hand, the architecture generated by SGBAN achieves 0.59% improvements of accuracy, with only 33.44% parameters when compared with the FCNs composed of manual design architectures, i.e., 500+150 hidden units, on MNIST. Furthermore, we demonstrate that replacing the fully connected layers of the well-trained VGG-19 with SGBAN can gain a slightly improved performance with less than 1% parameters on all these tasks. Finally, we show that the proposed method can conduct the incremental learning tasks and outperform the three outstanding incremental learning methods, i.e., learning without forgetting, elastic weight consolidation, and gradient episodic memory, on both the incremental learning tasks on Disjoint MNIST and Disjoint CIFAR-10.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖胖完成签到 ,获得积分0
刚刚
量子星尘发布了新的文献求助10
1秒前
烈阳初现发布了新的文献求助10
3秒前
尔信完成签到 ,获得积分10
3秒前
LXZ完成签到,获得积分10
4秒前
黄启烽完成签到,获得积分10
4秒前
瓦罐完成签到 ,获得积分10
7秒前
Perrylin718完成签到,获得积分10
8秒前
笨笨青筠完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
Bioflying完成签到,获得积分10
13秒前
阿达完成签到 ,获得积分10
13秒前
urologywang完成签到 ,获得积分10
14秒前
好好应助科研通管家采纳,获得10
17秒前
好好应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
卑微学术人完成签到 ,获得积分10
19秒前
20秒前
111111完成签到,获得积分10
21秒前
烈阳初现完成签到,获得积分10
21秒前
笑林完成签到 ,获得积分10
21秒前
谨慎的凝丝完成签到,获得积分10
23秒前
岩松完成签到 ,获得积分10
25秒前
布吉布完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
淡淡醉波wuliao完成签到 ,获得积分10
27秒前
Much完成签到 ,获得积分10
29秒前
吃颗电池完成签到 ,获得积分10
32秒前
王懒懒完成签到 ,获得积分10
33秒前
三伏天发布了新的文献求助10
35秒前
负责的紫安完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
43秒前
songyu完成签到,获得积分10
47秒前
khh完成签到 ,获得积分10
49秒前
伶俐芷珊完成签到,获得积分10
50秒前
纯情的语薇完成签到 ,获得积分10
54秒前
辛巴先生完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839