亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Growing Binary Activation Network: A Novel Deep Learning Model With Dynamic Architecture

MNIST数据库 计算机科学 建筑 人工智能 天基建筑 冗余(工程) 网络体系结构 深度学习 人工神经网络 二进制数 过程(计算) 任务(项目管理) 功能(生物学) 机器学习 参考体系结构 软件体系结构 软件 工程类 数学 艺术 计算机安全 算术 系统工程 进化生物学 视觉艺术 生物 程序设计语言 操作系统
作者
Ze-Yang Zhang,Yidong Chen,Changle Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 624-633 被引量:4
标识
DOI:10.1109/tnnls.2022.3176027
摘要

For a deep learning model, the network architecture is crucial as a model with inappropriate architecture often suffers from performance degradation or parameter redundancy. However, it is experiential and difficult to find the appropriate architecture for a certain application. To tackle this problem, we propose a novel deep learning model with dynamic architecture, named self-growing binary activation network (SGBAN), which can extend the design of a fully connected network (FCN) progressively, resulting in a more compact architecture with higher performance on a certain task. This constructing process is more efficient than neural architecture search methods that train mass of networks to search for the optimal one. Concretely, the training technique of SGBAN is based on the function-preserving transformations that can expand the architecture and combine the information in the new data without neglecting the knowledge learned in the previous steps. The experimental results on four different classification tasks, i.e., Iris, MNIST, CIFAR-10, and CIFAR-100, demonstrate the effectiveness of SGBAN. On the one hand, SGBAN achieves competitive accuracy when compared with the FCN composed of the same architecture, which indicates that the new training technique has the equivalent optimization ability as the traditional optimization methods. On the other hand, the architecture generated by SGBAN achieves 0.59% improvements of accuracy, with only 33.44% parameters when compared with the FCNs composed of manual design architectures, i.e., 500+150 hidden units, on MNIST. Furthermore, we demonstrate that replacing the fully connected layers of the well-trained VGG-19 with SGBAN can gain a slightly improved performance with less than 1% parameters on all these tasks. Finally, we show that the proposed method can conduct the incremental learning tasks and outperform the three outstanding incremental learning methods, i.e., learning without forgetting, elastic weight consolidation, and gradient episodic memory, on both the incremental learning tasks on Disjoint MNIST and Disjoint CIFAR-10.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
15秒前
LeoBigman完成签到 ,获得积分10
28秒前
39秒前
40秒前
小雨发布了新的文献求助10
44秒前
djnjv完成签到 ,获得积分10
46秒前
Akim应助饱满绫采纳,获得10
1分钟前
1分钟前
饱满绫发布了新的文献求助10
1分钟前
balko发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Frank发布了新的文献求助10
2分钟前
快乐谷蓝完成签到,获得积分10
2分钟前
饱满绫完成签到,获得积分20
3分钟前
南寅完成签到,获得积分10
3分钟前
土豆你个西红柿完成签到 ,获得积分10
3分钟前
陶醉的蜜蜂完成签到,获得积分10
3分钟前
jayliu完成签到,获得积分10
3分钟前
3分钟前
桥洞居士发布了新的文献求助10
4分钟前
天天快乐应助科研通管家采纳,获得10
4分钟前
Frank发布了新的文献求助10
4分钟前
苏梗完成签到 ,获得积分10
4分钟前
专一的忆寒完成签到,获得积分10
4分钟前
浮游应助含蓄草丛采纳,获得10
4分钟前
4分钟前
桥洞居士完成签到,获得积分10
4分钟前
4分钟前
5分钟前
曦耀发布了新的文献求助10
5分钟前
韩小土豆完成签到 ,获得积分10
5分钟前
伯劳完成签到,获得积分10
5分钟前
勇敢的蝙蝠侠完成签到 ,获得积分10
6分钟前
天天快乐应助科研通管家采纳,获得10
6分钟前
www发布了新的文献求助10
6分钟前
7分钟前
7分钟前
7分钟前
吕敬瑶发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634956
求助须知:如何正确求助?哪些是违规求助? 4734376
关于积分的说明 14989532
捐赠科研通 4792698
什么是DOI,文献DOI怎么找? 2559792
邀请新用户注册赠送积分活动 1520087
关于科研通互助平台的介绍 1480167