Self-Growing Binary Activation Network: A Novel Deep Learning Model With Dynamic Architecture

MNIST数据库 计算机科学 建筑 人工智能 天基建筑 冗余(工程) 网络体系结构 深度学习 人工神经网络 二进制数 过程(计算) 任务(项目管理) 功能(生物学) 机器学习 参考体系结构 软件体系结构 软件 工程类 数学 艺术 计算机安全 算术 系统工程 进化生物学 视觉艺术 生物 程序设计语言 操作系统
作者
Ze-Yang Zhang,Yidong Chen,Changle Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 624-633 被引量:4
标识
DOI:10.1109/tnnls.2022.3176027
摘要

For a deep learning model, the network architecture is crucial as a model with inappropriate architecture often suffers from performance degradation or parameter redundancy. However, it is experiential and difficult to find the appropriate architecture for a certain application. To tackle this problem, we propose a novel deep learning model with dynamic architecture, named self-growing binary activation network (SGBAN), which can extend the design of a fully connected network (FCN) progressively, resulting in a more compact architecture with higher performance on a certain task. This constructing process is more efficient than neural architecture search methods that train mass of networks to search for the optimal one. Concretely, the training technique of SGBAN is based on the function-preserving transformations that can expand the architecture and combine the information in the new data without neglecting the knowledge learned in the previous steps. The experimental results on four different classification tasks, i.e., Iris, MNIST, CIFAR-10, and CIFAR-100, demonstrate the effectiveness of SGBAN. On the one hand, SGBAN achieves competitive accuracy when compared with the FCN composed of the same architecture, which indicates that the new training technique has the equivalent optimization ability as the traditional optimization methods. On the other hand, the architecture generated by SGBAN achieves 0.59% improvements of accuracy, with only 33.44% parameters when compared with the FCNs composed of manual design architectures, i.e., 500+150 hidden units, on MNIST. Furthermore, we demonstrate that replacing the fully connected layers of the well-trained VGG-19 with SGBAN can gain a slightly improved performance with less than 1% parameters on all these tasks. Finally, we show that the proposed method can conduct the incremental learning tasks and outperform the three outstanding incremental learning methods, i.e., learning without forgetting, elastic weight consolidation, and gradient episodic memory, on both the incremental learning tasks on Disjoint MNIST and Disjoint CIFAR-10.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KCMd发布了新的文献求助20
1秒前
1秒前
wjx发布了新的文献求助10
2秒前
2秒前
船舵发布了新的文献求助10
2秒前
我是老大应助qingjiuhua采纳,获得10
3秒前
Lucas应助复杂梦安采纳,获得10
3秒前
dawei完成签到 ,获得积分10
4秒前
欣喜翠丝完成签到,获得积分10
4秒前
李爱国应助板栗采纳,获得10
4秒前
欣阳1021完成签到,获得积分10
4秒前
CodeCraft应助大野采纳,获得10
4秒前
椰子卷完成签到,获得积分10
5秒前
ds完成签到,获得积分10
5秒前
李健的粉丝团团长应助xumy采纳,获得10
5秒前
打打应助铲铲采纳,获得10
6秒前
天地一体完成签到,获得积分10
6秒前
科研通AI6应助lvzhechen采纳,获得10
6秒前
耿春丽完成签到 ,获得积分10
6秒前
欣喜翠丝发布了新的文献求助10
6秒前
共享精神应助zai采纳,获得10
6秒前
万能图书馆应助豆包_P12345采纳,获得10
7秒前
潇洒的水蓉完成签到,获得积分10
7秒前
血鸚鵡发布了新的文献求助20
7秒前
敏感雅香发布了新的文献求助10
8秒前
苗松发布了新的文献求助10
8秒前
方易烟完成签到,获得积分10
9秒前
飞快的从丹完成签到,获得积分10
9秒前
英俊的铭应助岁岁采纳,获得10
9秒前
科研通AI6应助ray采纳,获得10
10秒前
KCMd完成签到,获得积分10
10秒前
邱穗发布了新的文献求助10
10秒前
zhz完成签到,获得积分10
10秒前
hey应助Wayne采纳,获得10
11秒前
12秒前
13秒前
Rita完成签到,获得积分10
13秒前
13秒前
Lin完成签到,获得积分10
15秒前
李健的小迷弟应助xny采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745