Forecasting natural gas consumption using Bagging and modified regularization techniques

单变量 计算机科学 引导聚合 集成学习 熵(时间箭头) 正规化(语言学) 机器学习 集合预报 计量经济学 数据挖掘 人工智能 数学 多元统计 物理 量子力学
作者
Erick Meira de Oliveira,Fernando A. Bozza,Lilian M. de Menezes
出处
期刊:Energy Economics [Elsevier BV]
卷期号:106: 105760-105760 被引量:12
标识
DOI:10.1016/j.eneco.2021.105760
摘要

This paper develops a new approach to forecast natural gas consumption via ensembles. It combines Bootstrap Aggregation (Bagging), univariate time series forecasting methods and modified regularization routines. A new variant of Bagging is introduced, which uses Maximum Entropy Bootstrap (MEB) and a modified regularization routine that ensures that the data generating process is kept in the ensemble. Monthly natural gas consumption time series from 18 European countries are considered. A comparative, out-of-sample evaluation is conducted up to 12 steps (a year) ahead, using a comprehensive set of competing forecasting approaches. These range from statistical benchmarks to machine learning methods and state-of-the-art ensembles. Several performance (accuracy) metrics are used, and a sensitivity analysis is undertaken. Overall, the new variant of Bagging is flexible, reliable, and outperforms well-established approaches. Consequently, it is suitable to support decision making in the energy and other sectors. • A novel ensemble approach to natural gas demand forecasting is proposed. • Machine Learning and Statistics are combined to tailor time series characteristics. • Monthly data from 18 EU markets are used to assess forecasting performance. • The approach is shown to be suitable to support decision making in the energy sector.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦大侠发布了新的文献求助10
2秒前
拾忆完成签到,获得积分10
3秒前
3秒前
向上的小v完成签到 ,获得积分10
4秒前
顾矜应助Ronnie采纳,获得10
5秒前
5秒前
111完成签到,获得积分10
5秒前
2028847955完成签到,获得积分20
6秒前
6秒前
青梧完成签到,获得积分10
6秒前
bkagyin应助小沫采纳,获得10
6秒前
7秒前
ZS完成签到,获得积分10
9秒前
明理尔安完成签到,获得积分10
10秒前
啊印发布了新的文献求助10
10秒前
2028847955发布了新的文献求助30
10秒前
凉白开完成签到 ,获得积分10
11秒前
11秒前
13秒前
彭于晏应助白桃味的夏采纳,获得10
15秒前
15秒前
玖玖完成签到 ,获得积分10
15秒前
16秒前
SDS发布了新的文献求助10
16秒前
花开富贵完成签到,获得积分10
16秒前
星辰大海应助研自助采纳,获得50
17秒前
Ronnie发布了新的文献求助10
18秒前
时尚诗蕊完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
CodeCraft应助圣晟胜采纳,获得10
21秒前
21秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
Deiog关注了科研通微信公众号
22秒前
22秒前
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952693
求助须知:如何正确求助?哪些是违规求助? 3498194
关于积分的说明 11090590
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801350