CNN and Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and correction

计算机科学 卷积神经网络 自编码 人工智能 噪音(视频) 深度学习 实时计算 故障检测与隔离 模式识别(心理学) 工程类 数据挖掘 断层(地质) 地震学 执行机构 地质学 图像(数学)
作者
Debasish Jana,Jayant Patil,Sudheendra Herkal,Satish Nagarajaiah,Leonardo Dueñas‐Osorio
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:169: 108723-108723 被引量:98
标识
DOI:10.1016/j.ymssp.2021.108723
摘要

Increasing advances in sensing technologies and analytics have led to the proliferation of sensors to monitor structural and infrastructural systems. Accurate sensor data can provide information about structural health, aid in prognosis, and help calculate forces for vibration control. However, sensors are susceptible to faults such as loss of data, random noise, bias, drift, etc., due to the aging of sensors, defects, or environmental factors. Although traditional signal processing techniques can detect and isolate faults and reconstruct corrupt or missing sensor data, they demand significant human intervention. The continuous rise in computational power and demonstrated efficacy in numerous domains motivates the use of deep learning to minimize human-in-the-loop techniques. In this work, we introduce a novel, deep learning framework for linear systems with time-invariant parameters that identifies the presence and type of fault in sensor data, location of the faulty sensor and subsequently reconstructs the correct sensor data for fault detection, fault classification, and reconstruction. In our framework, first, a Convolutional Neural Network (CNN) is used to detect the presence of a fault and identify its type. Next, a suite of individually trained Convolutional Autoencoder (CAE) networks corresponding to each type of fault are employed for reconstruction. We demonstrate the efficacy of our framework to address both single and multiple sensor faults in synthetically generated data of a simple shear-type structure and experimentally measured data from a simplified arch bridge. While the framework is agnostic of fault-type, we demonstrate its use for four types of fault namely, missing, spiky, random, and drift. For both simulated and experimental datasets with a single fault, our models performed well, achieving 100% accuracy in faulty sensor localization, more than 98.7% accuracy in fault type detection, and more than 99% accuracy in reconstruction. Our framework can also address multiple concurrent faults with similar accuracy. We empirically demonstrate that our proposed framework performs better than other state-of-the-art techniques in terms of computational efficiency with comparable accuracy. Adoption of our framework in online structural health monitoring applications can lead to minimal disruption to monitoring processes, reduced downtime for structures and infrastructure while simultaneously reducing uncertainty and improving the quality of sensor data for historical records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的白安完成签到,获得积分10
刚刚
徐徐发布了新的文献求助10
1秒前
YK完成签到,获得积分20
1秒前
淏瀚完成签到,获得积分10
1秒前
幻想Cloudy完成签到 ,获得积分0
3秒前
什米发布了新的文献求助10
4秒前
4秒前
Lucky完成签到,获得积分10
5秒前
5秒前
木叶花月楼完成签到,获得积分10
6秒前
6秒前
Lucky发布了新的文献求助30
8秒前
8秒前
Jeremy完成签到,获得积分10
8秒前
ee发布了新的文献求助20
9秒前
9秒前
Suzy完成签到,获得积分10
10秒前
11秒前
11秒前
杨乐多发布了新的文献求助10
11秒前
小二郎应助行走的车采纳,获得10
12秒前
福中医发布了新的文献求助10
13秒前
嘻嘻哈哈发布了新的文献求助10
13秒前
Suzy发布了新的文献求助10
13秒前
小晶豆发布了新的文献求助10
15秒前
16秒前
周四一发布了新的文献求助10
16秒前
咚咚完成签到,获得积分10
18秒前
小蘑菇应助土豪的不悔采纳,获得10
20秒前
20秒前
毛毛完成签到,获得积分10
20秒前
22秒前
snowball发布了新的文献求助10
23秒前
23秒前
淏瀚发布了新的文献求助10
23秒前
24秒前
CodeCraft应助wsqg123采纳,获得10
26秒前
27秒前
yjercou发布了新的文献求助30
27秒前
搜集达人应助糊涂的服饰采纳,获得10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161364
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7896925
捐赠科研通 2471712
什么是DOI,文献DOI怎么找? 1316085
科研通“疑难数据库(出版商)”最低求助积分说明 631156
版权声明 602112