CNN and Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and correction

计算机科学 卷积神经网络 自编码 人工智能 噪音(视频) 深度学习 实时计算 故障检测与隔离 无线传感器网络 模式识别(心理学) 工程类 数据挖掘 断层(地质) 地震学 执行机构 地质学 图像(数学) 计算机网络
作者
Debasish Jana,Jayant Patil,Sudheendra Herkal,Satish Nagarajaiah,Leonardo Dueñas‐Osorio
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:169: 108723-108723 被引量:134
标识
DOI:10.1016/j.ymssp.2021.108723
摘要

Increasing advances in sensing technologies and analytics have led to the proliferation of sensors to monitor structural and infrastructural systems. Accurate sensor data can provide information about structural health, aid in prognosis, and help calculate forces for vibration control. However, sensors are susceptible to faults such as loss of data, random noise, bias, drift, etc., due to the aging of sensors, defects, or environmental factors. Although traditional signal processing techniques can detect and isolate faults and reconstruct corrupt or missing sensor data, they demand significant human intervention. The continuous rise in computational power and demonstrated efficacy in numerous domains motivates the use of deep learning to minimize human-in-the-loop techniques. In this work, we introduce a novel, deep learning framework for linear systems with time-invariant parameters that identifies the presence and type of fault in sensor data, location of the faulty sensor and subsequently reconstructs the correct sensor data for fault detection, fault classification, and reconstruction. In our framework, first, a Convolutional Neural Network (CNN) is used to detect the presence of a fault and identify its type. Next, a suite of individually trained Convolutional Autoencoder (CAE) networks corresponding to each type of fault are employed for reconstruction. We demonstrate the efficacy of our framework to address both single and multiple sensor faults in synthetically generated data of a simple shear-type structure and experimentally measured data from a simplified arch bridge. While the framework is agnostic of fault-type, we demonstrate its use for four types of fault namely, missing, spiky, random, and drift. For both simulated and experimental datasets with a single fault, our models performed well, achieving 100% accuracy in faulty sensor localization, more than 98.7% accuracy in fault type detection, and more than 99% accuracy in reconstruction. Our framework can also address multiple concurrent faults with similar accuracy. We empirically demonstrate that our proposed framework performs better than other state-of-the-art techniques in terms of computational efficiency with comparable accuracy. Adoption of our framework in online structural health monitoring applications can lead to minimal disruption to monitoring processes, reduced downtime for structures and infrastructure while simultaneously reducing uncertainty and improving the quality of sensor data for historical records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
挖井的人完成签到,获得积分10
刚刚
所所应助zzz采纳,获得10
1秒前
肚皮完成签到 ,获得积分10
1秒前
Shantx完成签到,获得积分10
1秒前
郭郭要努力ya完成签到 ,获得积分10
1秒前
乌禅发布了新的文献求助10
2秒前
大喵完成签到,获得积分10
3秒前
3秒前
Xian发布了新的文献求助10
4秒前
舒心映易发布了新的文献求助10
4秒前
高大厉完成签到,获得积分10
5秒前
Akim应助雪无痕3074采纳,获得10
5秒前
5秒前
小方完成签到,获得积分10
6秒前
9秒前
J.发布了新的文献求助20
9秒前
寒冷河马发布了新的文献求助10
10秒前
风清扬应助玄月采纳,获得10
11秒前
轻松的惜芹应助kento采纳,获得50
12秒前
12秒前
汤瀚文完成签到 ,获得积分10
13秒前
yu完成签到,获得积分10
15秒前
毛毛发布了新的文献求助10
16秒前
zjq完成签到,获得积分10
18秒前
寒冷河马完成签到,获得积分10
21秒前
公冶笑白发布了新的文献求助10
22秒前
SSS完成签到,获得积分10
24秒前
wpx完成签到,获得积分10
25秒前
小乐完成签到,获得积分10
26秒前
27秒前
长江完成签到 ,获得积分10
27秒前
努力熊熊完成签到,获得积分10
29秒前
29秒前
30秒前
风清扬应助乌禅采纳,获得10
30秒前
科目三应助moonlight采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
yx_cheng应助科研通管家采纳,获得10
31秒前
ding应助科研通管家采纳,获得10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176