CNN and Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and correction

计算机科学 卷积神经网络 自编码 人工智能 噪音(视频) 深度学习 实时计算 故障检测与隔离 无线传感器网络 模式识别(心理学) 工程类 数据挖掘 断层(地质) 地质学 图像(数学) 地震学 执行机构 计算机网络
作者
Debasish Jana,Jayant Patil,Sudheendra Herkal,Satish Nagarajaiah,Leonardo Dueñas‐Osorio
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:169: 108723-108723 被引量:134
标识
DOI:10.1016/j.ymssp.2021.108723
摘要

Increasing advances in sensing technologies and analytics have led to the proliferation of sensors to monitor structural and infrastructural systems. Accurate sensor data can provide information about structural health, aid in prognosis, and help calculate forces for vibration control. However, sensors are susceptible to faults such as loss of data, random noise, bias, drift, etc., due to the aging of sensors, defects, or environmental factors. Although traditional signal processing techniques can detect and isolate faults and reconstruct corrupt or missing sensor data, they demand significant human intervention. The continuous rise in computational power and demonstrated efficacy in numerous domains motivates the use of deep learning to minimize human-in-the-loop techniques. In this work, we introduce a novel, deep learning framework for linear systems with time-invariant parameters that identifies the presence and type of fault in sensor data, location of the faulty sensor and subsequently reconstructs the correct sensor data for fault detection, fault classification, and reconstruction. In our framework, first, a Convolutional Neural Network (CNN) is used to detect the presence of a fault and identify its type. Next, a suite of individually trained Convolutional Autoencoder (CAE) networks corresponding to each type of fault are employed for reconstruction. We demonstrate the efficacy of our framework to address both single and multiple sensor faults in synthetically generated data of a simple shear-type structure and experimentally measured data from a simplified arch bridge. While the framework is agnostic of fault-type, we demonstrate its use for four types of fault namely, missing, spiky, random, and drift. For both simulated and experimental datasets with a single fault, our models performed well, achieving 100% accuracy in faulty sensor localization, more than 98.7% accuracy in fault type detection, and more than 99% accuracy in reconstruction. Our framework can also address multiple concurrent faults with similar accuracy. We empirically demonstrate that our proposed framework performs better than other state-of-the-art techniques in terms of computational efficiency with comparable accuracy. Adoption of our framework in online structural health monitoring applications can lead to minimal disruption to monitoring processes, reduced downtime for structures and infrastructure while simultaneously reducing uncertainty and improving the quality of sensor data for historical records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JHY完成签到,获得积分10
1秒前
一个大花瓶完成签到 ,获得积分10
2秒前
柳叶完成签到,获得积分10
2秒前
imchenyin完成签到,获得积分10
3秒前
3秒前
5秒前
5秒前
Hongtao完成签到 ,获得积分10
6秒前
情怀应助朴实的山灵采纳,获得10
6秒前
6秒前
邓凯月完成签到,获得积分10
7秒前
agility完成签到,获得积分10
7秒前
小马甲应助lxy采纳,获得10
7秒前
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
核桃发布了新的文献求助10
10秒前
Quhang完成签到,获得积分10
12秒前
lxy完成签到,获得积分20
13秒前
13秒前
清风发布了新的文献求助10
14秒前
MCY发布了新的文献求助10
14秒前
屁颠小豪完成签到,获得积分10
15秒前
15秒前
16秒前
SciGPT应助静宝采纳,获得10
17秒前
人走茶凉发布了新的文献求助10
18秒前
爆米花应助jtyt采纳,获得10
19秒前
在水一方应助111采纳,获得10
20秒前
21秒前
桐桐应助一只可爱壳采纳,获得10
21秒前
旦丁洋完成签到,获得积分10
22秒前
呆萌的秋天完成签到,获得积分10
22秒前
24秒前
无极微光应助旦丁洋采纳,获得20
25秒前
小安完成签到,获得积分10
25秒前
lxy发布了新的文献求助10
28秒前
伤心猪大肠完成签到,获得积分10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742484
求助须知:如何正确求助?哪些是违规求助? 5408853
关于积分的说明 15345143
捐赠科研通 4883750
什么是DOI,文献DOI怎么找? 2625301
邀请新用户注册赠送积分活动 1574150
关于科研通互助平台的介绍 1531084