Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN

卷积神经网络 支持向量机 计算机科学 模式识别(心理学) 人工智能 生物系统 偏最小二乘回归 高光谱成像 数学 机器学习 生物
作者
Shijie Tian,Shuai Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106638-106638 被引量:51
标识
DOI:10.1016/j.compag.2021.106638
摘要

Realizing online detection of early freezing damage of citrus fruits is meaningful and profitable in the existing postharvest sorting system of fruits and vegetables. Transmission spectra of 114 oranges in the range of 644–900 nm were obtained using a self-designed online spectral measurement system in this study. Fruit size seriously affected the intensity of transmission spectra and thus reduced the detection accuracy of the model for early freezing damage. To solve this problem, a new diameter correction method (DCM) was proposed. The results showed that DCM could eliminate the effect of fruit size on transmission spectra more effectively than multiplicative scattering correction (MSC) and standard normal variable (SNV), and partial least squares discrimination analysis (PLSDA) and support vector machine (SVM) models based on DCM pretreated spectra had better performance. To eliminate the collinearity variables in the original spectra and simplify the model, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to extract effective wavelengths (EWs). The accuracy of DCM-CARS-SPA-PLSDA model established by 15 EWs for early freezing damage identification met the requirement of online detection. A one-dimensional Convolutional Neural Network (1D-CNN) architecture was proposed in this study to further improve the detection accuracy. The model established by combining DCM and 1D-CNN had the best performance. In the prediction set, the recall of the optimal model for the early freeze-damaged oranges and unfrozen oranges was 95.15 % and 88.54 %, and the overall accuracy was 91.96 %. Therefore, the DCM and 1D-CNN method proposed in this study can effectively eliminate the effect of fruit size on transmission spectra, and enable the model to effectively identify freezing damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chlorine完成签到,获得积分10
刚刚
TTTTREE发布了新的文献求助20
刚刚
共享精神应助Sh_Wen采纳,获得10
刚刚
健忘的翠柏完成签到,获得积分10
刚刚
1秒前
蘑菇完成签到 ,获得积分10
1秒前
1秒前
1秒前
yan发布了新的文献求助10
1秒前
qq完成签到,获得积分10
1秒前
豆豆完成签到 ,获得积分10
1秒前
标致的战斗机完成签到,获得积分10
2秒前
李琛完成签到,获得积分10
2秒前
BLUE完成签到,获得积分10
3秒前
3秒前
勤劳绿凝完成签到,获得积分10
3秒前
隐形皮卡丘完成签到 ,获得积分10
4秒前
4秒前
xiaojinzi完成签到,获得积分10
4秒前
Mercury完成签到 ,获得积分10
4秒前
4秒前
不倦应助你好采纳,获得10
5秒前
烤鱼片完成签到 ,获得积分10
5秒前
菠菜发布了新的文献求助10
6秒前
俭朴幻梅完成签到,获得积分20
6秒前
呋喃完成签到,获得积分10
6秒前
冷酷的问晴完成签到,获得积分10
6秒前
大型海狮完成签到,获得积分10
6秒前
liviawong完成签到,获得积分10
6秒前
cijing完成签到,获得积分10
6秒前
666完成签到,获得积分10
6秒前
清秀的碧彤完成签到,获得积分10
6秒前
leclerc完成签到,获得积分10
6秒前
kuikui1100完成签到,获得积分10
7秒前
Skilixta发布了新的文献求助10
7秒前
Ava应助BLUE采纳,获得10
7秒前
槑槑完成签到 ,获得积分10
7秒前
Li发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388001
求助须知:如何正确求助?哪些是违规求助? 4509881
关于积分的说明 14033262
捐赠科研通 4420771
什么是DOI,文献DOI怎么找? 2428439
邀请新用户注册赠送积分活动 1421106
关于科研通互助平台的介绍 1400293