Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN

卷积神经网络 支持向量机 计算机科学 模式识别(心理学) 人工智能 生物系统 偏最小二乘回归 高光谱成像 数学 机器学习 生物
作者
Shijie Tian,Shuai Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106638-106638 被引量:51
标识
DOI:10.1016/j.compag.2021.106638
摘要

Realizing online detection of early freezing damage of citrus fruits is meaningful and profitable in the existing postharvest sorting system of fruits and vegetables. Transmission spectra of 114 oranges in the range of 644–900 nm were obtained using a self-designed online spectral measurement system in this study. Fruit size seriously affected the intensity of transmission spectra and thus reduced the detection accuracy of the model for early freezing damage. To solve this problem, a new diameter correction method (DCM) was proposed. The results showed that DCM could eliminate the effect of fruit size on transmission spectra more effectively than multiplicative scattering correction (MSC) and standard normal variable (SNV), and partial least squares discrimination analysis (PLSDA) and support vector machine (SVM) models based on DCM pretreated spectra had better performance. To eliminate the collinearity variables in the original spectra and simplify the model, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to extract effective wavelengths (EWs). The accuracy of DCM-CARS-SPA-PLSDA model established by 15 EWs for early freezing damage identification met the requirement of online detection. A one-dimensional Convolutional Neural Network (1D-CNN) architecture was proposed in this study to further improve the detection accuracy. The model established by combining DCM and 1D-CNN had the best performance. In the prediction set, the recall of the optimal model for the early freeze-damaged oranges and unfrozen oranges was 95.15 % and 88.54 %, and the overall accuracy was 91.96 %. Therefore, the DCM and 1D-CNN method proposed in this study can effectively eliminate the effect of fruit size on transmission spectra, and enable the model to effectively identify freezing damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
乐天林完成签到 ,获得积分10
1秒前
李健的小迷弟应助maiyatang采纳,获得10
1秒前
情谊超爷完成签到 ,获得积分10
2秒前
dove完成签到,获得积分10
2秒前
guoguo发布了新的文献求助10
2秒前
yyyyy完成签到,获得积分10
3秒前
3秒前
5秒前
nnnnn发布了新的文献求助10
5秒前
5秒前
危机的盼晴完成签到,获得积分10
5秒前
小魏小魏发布了新的文献求助10
5秒前
lsfgz111完成签到 ,获得积分10
6秒前
xxfsx应助杨武天一采纳,获得10
6秒前
6秒前
坦率耳机应助杨武天一采纳,获得10
6秒前
丘比特应助杨武天一采纳,获得10
6秒前
lixm发布了新的文献求助10
6秒前
香蕉觅云应助萝卜采纳,获得10
6秒前
泠泠泠萘完成签到 ,获得积分10
6秒前
胡质斌发布了新的文献求助20
7秒前
沙琪玛完成签到,获得积分10
8秒前
9秒前
9秒前
有钱完成签到,获得积分10
9秒前
Gaoge发布了新的文献求助10
10秒前
充电宝应助Bio_dong采纳,获得10
10秒前
12秒前
Orange应助Kins采纳,获得10
12秒前
13秒前
刘壮发布了新的文献求助10
14秒前
14秒前
11发布了新的文献求助10
14秒前
狂奔的蜗牛完成签到,获得积分10
15秒前
怕冲的便便完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
xxrr发布了新的文献求助10
17秒前
机灵书易完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429137
求助须知:如何正确求助?哪些是违规求助? 4542668
关于积分的说明 14181964
捐赠科研通 4460422
什么是DOI,文献DOI怎么找? 2445722
邀请新用户注册赠送积分活动 1436910
关于科研通互助平台的介绍 1414107