清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN

卷积神经网络 支持向量机 计算机科学 模式识别(心理学) 人工智能 生物系统 偏最小二乘回归 高光谱成像 数学 机器学习 生物
作者
Shijie Tian,Shuai Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106638-106638 被引量:51
标识
DOI:10.1016/j.compag.2021.106638
摘要

Realizing online detection of early freezing damage of citrus fruits is meaningful and profitable in the existing postharvest sorting system of fruits and vegetables. Transmission spectra of 114 oranges in the range of 644–900 nm were obtained using a self-designed online spectral measurement system in this study. Fruit size seriously affected the intensity of transmission spectra and thus reduced the detection accuracy of the model for early freezing damage. To solve this problem, a new diameter correction method (DCM) was proposed. The results showed that DCM could eliminate the effect of fruit size on transmission spectra more effectively than multiplicative scattering correction (MSC) and standard normal variable (SNV), and partial least squares discrimination analysis (PLSDA) and support vector machine (SVM) models based on DCM pretreated spectra had better performance. To eliminate the collinearity variables in the original spectra and simplify the model, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to extract effective wavelengths (EWs). The accuracy of DCM-CARS-SPA-PLSDA model established by 15 EWs for early freezing damage identification met the requirement of online detection. A one-dimensional Convolutional Neural Network (1D-CNN) architecture was proposed in this study to further improve the detection accuracy. The model established by combining DCM and 1D-CNN had the best performance. In the prediction set, the recall of the optimal model for the early freeze-damaged oranges and unfrozen oranges was 95.15 % and 88.54 %, and the overall accuracy was 91.96 %. Therefore, the DCM and 1D-CNN method proposed in this study can effectively eliminate the effect of fruit size on transmission spectra, and enable the model to effectively identify freezing damage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天123完成签到 ,获得积分10
3秒前
乔杰完成签到 ,获得积分10
11秒前
23秒前
26秒前
dyuguo3完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
29秒前
32秒前
42秒前
44秒前
困的晕福福完成签到 ,获得积分10
45秒前
Eins完成签到 ,获得积分10
52秒前
蝎子莱莱xth完成签到,获得积分10
59秒前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
freyaaaaa应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
Xixi完成签到 ,获得积分10
1分钟前
1分钟前
雪山飞龙发布了新的文献求助10
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
ceeray23发布了新的文献求助20
2分钟前
李健的小迷弟应助ceeray23采纳,获得20
2分钟前
2分钟前
希望天下0贩的0应助liwen采纳,获得10
2分钟前
2分钟前
klpkyx发布了新的文献求助10
2分钟前
klpkyx完成签到,获得积分10
3分钟前
3分钟前
liwen发布了新的文献求助10
3分钟前
DoctorTa发布了新的文献求助30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
DoctorTa完成签到,获得积分10
3分钟前
juan完成签到 ,获得积分0
3分钟前
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554977
求助须知:如何正确求助?哪些是违规求助? 4639572
关于积分的说明 14656373
捐赠科研通 4581518
什么是DOI,文献DOI怎么找? 2512837
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503