重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN

卷积神经网络 支持向量机 计算机科学 模式识别(心理学) 人工智能 生物系统 偏最小二乘回归 高光谱成像 数学 机器学习 生物
作者
Shijie Tian,Shuai Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106638-106638 被引量:51
标识
DOI:10.1016/j.compag.2021.106638
摘要

Realizing online detection of early freezing damage of citrus fruits is meaningful and profitable in the existing postharvest sorting system of fruits and vegetables. Transmission spectra of 114 oranges in the range of 644–900 nm were obtained using a self-designed online spectral measurement system in this study. Fruit size seriously affected the intensity of transmission spectra and thus reduced the detection accuracy of the model for early freezing damage. To solve this problem, a new diameter correction method (DCM) was proposed. The results showed that DCM could eliminate the effect of fruit size on transmission spectra more effectively than multiplicative scattering correction (MSC) and standard normal variable (SNV), and partial least squares discrimination analysis (PLSDA) and support vector machine (SVM) models based on DCM pretreated spectra had better performance. To eliminate the collinearity variables in the original spectra and simplify the model, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to extract effective wavelengths (EWs). The accuracy of DCM-CARS-SPA-PLSDA model established by 15 EWs for early freezing damage identification met the requirement of online detection. A one-dimensional Convolutional Neural Network (1D-CNN) architecture was proposed in this study to further improve the detection accuracy. The model established by combining DCM and 1D-CNN had the best performance. In the prediction set, the recall of the optimal model for the early freeze-damaged oranges and unfrozen oranges was 95.15 % and 88.54 %, and the overall accuracy was 91.96 %. Therefore, the DCM and 1D-CNN method proposed in this study can effectively eliminate the effect of fruit size on transmission spectra, and enable the model to effectively identify freezing damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助6666采纳,获得10
刚刚
大反应釜发布了新的文献求助10
刚刚
diaohua发布了新的文献求助10
刚刚
浮游应助苞米洋子采纳,获得10
刚刚
孤独的尔冬完成签到,获得积分10
1秒前
1秒前
小二郎应助11采纳,获得10
3秒前
星际发布了新的文献求助10
3秒前
深情安青应助汉堡肉采纳,获得10
3秒前
ylf完成签到,获得积分10
3秒前
4秒前
zkexuan完成签到,获得积分10
4秒前
李健源完成签到,获得积分10
4秒前
4秒前
哎呀完成签到,获得积分20
4秒前
4秒前
今后应助TT采纳,获得10
4秒前
4秒前
5秒前
5秒前
ao完成签到,获得积分10
5秒前
5秒前
Junly完成签到 ,获得积分10
6秒前
xczhu发布了新的文献求助30
6秒前
呱啦呱啦发布了新的文献求助10
7秒前
CodeCraft应助新火新茶采纳,获得10
7秒前
黄晟原发布了新的文献求助10
7秒前
merry2025发布了新的文献求助10
7秒前
7秒前
斯文败类应助有益采纳,获得10
7秒前
7秒前
隐形曼青应助Refuel采纳,获得10
8秒前
巴啦啦完成签到 ,获得积分20
8秒前
8秒前
CodeCraft应助maomoshen采纳,获得10
8秒前
赘婿应助Boy_h采纳,获得10
8秒前
快乐小狗完成签到,获得积分10
9秒前
9秒前
希望天下0贩的0应助yayaya采纳,获得10
9秒前
ao发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567