Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN

卷积神经网络 支持向量机 计算机科学 模式识别(心理学) 人工智能 生物系统 偏最小二乘回归 高光谱成像 数学 机器学习 生物
作者
Shijie Tian,Shuai Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106638-106638 被引量:51
标识
DOI:10.1016/j.compag.2021.106638
摘要

Realizing online detection of early freezing damage of citrus fruits is meaningful and profitable in the existing postharvest sorting system of fruits and vegetables. Transmission spectra of 114 oranges in the range of 644–900 nm were obtained using a self-designed online spectral measurement system in this study. Fruit size seriously affected the intensity of transmission spectra and thus reduced the detection accuracy of the model for early freezing damage. To solve this problem, a new diameter correction method (DCM) was proposed. The results showed that DCM could eliminate the effect of fruit size on transmission spectra more effectively than multiplicative scattering correction (MSC) and standard normal variable (SNV), and partial least squares discrimination analysis (PLSDA) and support vector machine (SVM) models based on DCM pretreated spectra had better performance. To eliminate the collinearity variables in the original spectra and simplify the model, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to extract effective wavelengths (EWs). The accuracy of DCM-CARS-SPA-PLSDA model established by 15 EWs for early freezing damage identification met the requirement of online detection. A one-dimensional Convolutional Neural Network (1D-CNN) architecture was proposed in this study to further improve the detection accuracy. The model established by combining DCM and 1D-CNN had the best performance. In the prediction set, the recall of the optimal model for the early freeze-damaged oranges and unfrozen oranges was 95.15 % and 88.54 %, and the overall accuracy was 91.96 %. Therefore, the DCM and 1D-CNN method proposed in this study can effectively eliminate the effect of fruit size on transmission spectra, and enable the model to effectively identify freezing damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助xyz采纳,获得10
1秒前
1秒前
中华有为发布了新的文献求助10
2秒前
2秒前
FashionBoy应助wwww采纳,获得10
2秒前
2秒前
大方嵩发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
猪猪发布了新的文献求助10
4秒前
单薄白薇发布了新的文献求助10
4秒前
豆子完成签到,获得积分10
5秒前
通~发布了新的文献求助10
6秒前
橘子哥完成签到,获得积分10
6秒前
mnm发布了新的文献求助10
7秒前
柔弱凡松发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
SHDeathlock发布了新的文献求助50
8秒前
乐乐应助hu970采纳,获得10
8秒前
单薄白薇完成签到,获得积分10
10秒前
陈杰发布了新的文献求助10
10秒前
10秒前
10秒前
小张张发布了新的文献求助10
10秒前
乐乐应助YAN采纳,获得10
11秒前
迷惘墨香完成签到 ,获得积分10
12秒前
12秒前
Cynthia发布了新的文献求助30
12秒前
共享精神应助shenyanlei采纳,获得10
13秒前
wwww发布了新的文献求助10
13秒前
蔡菜菜完成签到,获得积分10
14秒前
852应助小余采纳,获得10
14秒前
饱满秋完成签到,获得积分10
15秒前
夜白发布了新的文献求助20
15秒前
搜集达人应助明月清风采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762