Early detection of freezing damage in oranges by online Vis/NIR transmission coupled with diameter correction method and deep 1D-CNN

卷积神经网络 支持向量机 计算机科学 模式识别(心理学) 人工智能 生物系统 偏最小二乘回归 高光谱成像 数学 机器学习 生物
作者
Shijie Tian,Shuai Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106638-106638 被引量:51
标识
DOI:10.1016/j.compag.2021.106638
摘要

Realizing online detection of early freezing damage of citrus fruits is meaningful and profitable in the existing postharvest sorting system of fruits and vegetables. Transmission spectra of 114 oranges in the range of 644–900 nm were obtained using a self-designed online spectral measurement system in this study. Fruit size seriously affected the intensity of transmission spectra and thus reduced the detection accuracy of the model for early freezing damage. To solve this problem, a new diameter correction method (DCM) was proposed. The results showed that DCM could eliminate the effect of fruit size on transmission spectra more effectively than multiplicative scattering correction (MSC) and standard normal variable (SNV), and partial least squares discrimination analysis (PLSDA) and support vector machine (SVM) models based on DCM pretreated spectra had better performance. To eliminate the collinearity variables in the original spectra and simplify the model, competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to extract effective wavelengths (EWs). The accuracy of DCM-CARS-SPA-PLSDA model established by 15 EWs for early freezing damage identification met the requirement of online detection. A one-dimensional Convolutional Neural Network (1D-CNN) architecture was proposed in this study to further improve the detection accuracy. The model established by combining DCM and 1D-CNN had the best performance. In the prediction set, the recall of the optimal model for the early freeze-damaged oranges and unfrozen oranges was 95.15 % and 88.54 %, and the overall accuracy was 91.96 %. Therefore, the DCM and 1D-CNN method proposed in this study can effectively eliminate the effect of fruit size on transmission spectra, and enable the model to effectively identify freezing damage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助Roy采纳,获得10
1秒前
wangziwei发布了新的文献求助30
1秒前
周周发布了新的文献求助20
1秒前
szmsnail完成签到,获得积分10
2秒前
周周发布了新的文献求助20
2秒前
周周发布了新的文献求助20
2秒前
周周发布了新的文献求助20
2秒前
周周发布了新的文献求助30
2秒前
周周发布了新的文献求助20
2秒前
周周发布了新的文献求助20
3秒前
周周发布了新的文献求助20
3秒前
ala完成签到,获得积分10
4秒前
四七完成签到,获得积分10
4秒前
下水管的老鼠完成签到,获得积分10
4秒前
4秒前
5秒前
孙皓阳完成签到,获得积分10
5秒前
VV完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
研友_Raven发布了新的文献求助10
10秒前
王婧萱萱萱完成签到 ,获得积分10
10秒前
10秒前
狂野世立发布了新的文献求助10
11秒前
11秒前
12秒前
MooN发布了新的文献求助10
13秒前
13秒前
13秒前
enen发布了新的文献求助10
14秒前
快乐忆灵完成签到,获得积分20
15秒前
Foch发布了新的文献求助10
16秒前
安戈发布了新的文献求助10
16秒前
小美完成签到 ,获得积分10
17秒前
快乐忆灵发布了新的文献求助10
18秒前
CYJ发布了新的文献求助10
19秒前
菲比发布了新的文献求助10
19秒前
黄嘉慧完成签到 ,获得积分10
20秒前
科研通AI5应助Crab采纳,获得10
20秒前
火火火完成签到,获得积分10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152831
求助须知:如何正确求助?哪些是违规求助? 4348565
关于积分的说明 13539680
捐赠科研通 4190958
什么是DOI,文献DOI怎么找? 2298523
邀请新用户注册赠送积分活动 1298660
关于科研通互助平台的介绍 1243519