瑞利衰落
高斯分布
熵(时间箭头)
数学
衰退
凸性
振幅
信噪比
有界函数
信道容量
量化(信号处理)
控制理论(社会学)
高斯噪声
拓扑(电路)
数学优化
计算机科学
频道(广播)
算法
功率(物理)
电信
解码方法
数学分析
物理
组合数学
金融经济学
人工智能
经济
量子力学
控制(管理)
作者
Hasan Zahidur Rahman,Mohammad Ranjbar,Nghi H. Tran,Khanh Pham
标识
DOI:10.1109/milcom52596.2021.9652910
摘要
In this work, we investigate the optimal signaling schemes of a 2-user multiple access Rayleigh fading channel with 1-bit output quantization in the presence of Gaussian-mixture cochannel interference. The considered Gaussian mixture channel is an accurate model to capture non-Gaussian co-channel interference plus noise in practical wireless networks under coexistence regimes. By first examining the phases of the optimal input signals, we demonstrate that these phases must be π /2 circularly symmetric. As a result, the problem of optimizing the sum-rate is equivalent to minimizing the conditional output entropy. By establishing the Kuhn-Tucker condition (KTC) on the optimal amplitude input distributions, we then show that the optimal input amplitudes are bounded. Our proof relies on the convexity of the log of sum of Q functions. Then, given the linearity of the conditional entropy over the feasible set of bounded amplitude distributions, it is concluded that the optimal input signals must have constant amplitudes. Therefore, the use of any π /2 circularly symmetric signaling schemes with constant amplitudes and full power are sum-capacity-achieving. Using these optimal input signals, the sum-capacity can finally be calculated.
科研通智能强力驱动
Strongly Powered by AbleSci AI