Efficient Variational Bayes Learning of Graphical Models With Smooth Structural Changes

计算机科学 图形模型 推论 算法 人工智能 机器学习
作者
Hao Yu,Songwei Wu,Justin Dauwels
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 475-488 被引量:2
标识
DOI:10.1109/tpami.2022.3140886
摘要

Estimating a sequence of dynamic undirected graphical models, in which adjacent graphs share similar structures, is of paramount importance in various social, financial, biological, and engineering systems, since the evolution of such networks can be utilized for example to spot trends, detect anomalies, predict vulnerability, and evaluate the impact of interventions. Existing methods for learning dynamic graphical models require the tuning parameters that control the graph sparsity and the temporal smoothness to be selected via brute-force grid search. Furthermore, these methods are computationally burdensome with time complexity O(NP3) for P variables and N time points. As a remedy, we propose a low-complexity tuning-free Bayesian approach, named BASS. Specifically, we impose temporally dependent spike and slab priors on the graphs such that they are sparse and varying smoothly across time. An efficient variational inference algorithm based on natural gradients is then derived to learn the graph structures from the data in an automatic manner. Owing to the pseudo-likelihood and the mean-field approximation, the time complexity of BASS is only O(NP2). To cope with the local maxima problem of variational inference, we resort to simulated annealing and propose a method based on bootstrapping of the observations to generate the annealing noise. We provide numerical evidence that BASS outperforms existing methods on synthetic data in terms of structure estimation, while being more efficient especially when the dimension P becomes high. We further apply the approach to the stock return data of 78 banks from 2005 to 2013 and find that the number of edges in the financial network as a function of time contains three peaks, in coincidence with the 2008 global financial crisis and the two subsequent European debt crisis. On the other hand, by identifying the frequency-domain resemblance to the time-varying graphical models, we show that BASS can be extended to learning frequency-varying inverse spectral density matrices, and further yields graphical models for multivariate stationary time series. As an illustration, we analyze scalp EEG signals of patients at the early stages of Alzheimer's disease (AD) and show that the brain networks extracted by BASS can better distinguish between the patients and the healthy controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wahj10224完成签到,获得积分10
刚刚
析界成微发布了新的文献求助10
刚刚
刚刚
Yolen LI完成签到,获得积分10
刚刚
轻松笙完成签到,获得积分10
1秒前
1秒前
2秒前
王贺发布了新的文献求助10
2秒前
wgl完成签到,获得积分10
3秒前
阿佑完成签到,获得积分20
3秒前
luke发布了新的文献求助10
3秒前
ying完成签到,获得积分10
4秒前
DW完成签到,获得积分10
4秒前
eden完成签到,获得积分10
5秒前
5秒前
标致的方盒完成签到,获得积分10
6秒前
舒心平蝶完成签到 ,获得积分10
6秒前
阿佑发布了新的文献求助10
6秒前
6秒前
Sledge完成签到,获得积分10
7秒前
看文献的高光谱完成签到,获得积分10
7秒前
123发布了新的文献求助10
8秒前
Ava应助草莓采纳,获得10
8秒前
9秒前
现实的听芹完成签到,获得积分10
9秒前
maershui完成签到,获得积分10
9秒前
ai白哥完成签到,获得积分10
10秒前
明月清风完成签到,获得积分10
10秒前
qqqyy完成签到,获得积分10
10秒前
王贺完成签到,获得积分10
10秒前
妙妙完成签到,获得积分10
10秒前
CCCCPUTA完成签到,获得积分10
10秒前
11秒前
华桦子完成签到 ,获得积分10
11秒前
麦芽糖完成签到,获得积分10
11秒前
生动白开水完成签到,获得积分10
11秒前
彭于晏应助大白采纳,获得10
13秒前
阿士大夫完成签到,获得积分10
13秒前
迁小yan完成签到 ,获得积分10
13秒前
zanzan完成签到,获得积分10
14秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180081
求助须知:如何正确求助?哪些是违规求助? 2830441
关于积分的说明 7977245
捐赠科研通 2492017
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954