Health assessment of high-speed train wheels based on group-profile data

火车 主成分分析 可靠性(半导体) 工程类 特征(语言学) 状态维修 集合(抽象数据类型) 逻辑回归 数据挖掘 计算机科学 模式识别(心理学) 人工智能 可靠性工程 机器学习 功率(物理) 物理 量子力学 语言学 哲学 地图学 程序设计语言 地理
作者
Tianli Men,Yan‐Fu Li,Yujun Ji,Xinliang Zhang,Pengfei Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:223: 108496-108496 被引量:10
标识
DOI:10.1016/j.ress.2022.108496
摘要

The rapid development of high-speed trains has brought a significant demand to increase the reliability and optimize the maintenance of train wheels. As the state-of-the-art practice in high-speed trains, the maximal radial run-out and equivalent conicity are two leading health indicators (HIs) to assess the health status of the wheels. However, these two HIs cannot effectively assess the degree of wheel polygonal wear, which has been associated with the service failure of structural components. In the article, we propose a data-driven supervised learning framework for extracting a multi-dimensional HI to assess the condition of the wheels using group-profile data. To the authors ' knowledge, it is the first proposed multi-dimensional HI for the high-speed train wheels. The proposed framework is based on the proper integration of feature extraction and regression techniques, e.g., Hilbert-Huang transform, Functional Principal Component Analysis, and Logistic Regression. A set of real-world high-speed train wheel profile data are collected to validate the proposed framework. The statistical results show that the HI generated from the proposed framework outperforms the traditional HIs in abnormal wheels detection, i.e., classification. Additionally, the conditional probability based on the wheel profile data is proposed in this paper to achieve condition-based maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复成完成签到 ,获得积分10
2秒前
花生仁发布了新的文献求助10
2秒前
搞怪哑铃发布了新的文献求助10
2秒前
滕达完成签到,获得积分10
4秒前
liaoyoujiao完成签到,获得积分10
5秒前
奋斗枫应助科研通管家采纳,获得20
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
雨相所至应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
7秒前
kop完成签到,获得积分10
7秒前
爆米花应助cadnash采纳,获得10
8秒前
10秒前
大个应助陈仲采纳,获得10
11秒前
花生仁完成签到,获得积分10
12秒前
柔弱小猫咪完成签到,获得积分10
15秒前
zhangling发布了新的文献求助10
16秒前
18秒前
19秒前
sidegate应助xu采纳,获得10
20秒前
23秒前
23秒前
dongli0616发布了新的文献求助30
25秒前
more应助莫弈花茶采纳,获得10
26秒前
哈哈哈发布了新的文献求助10
27秒前
bluefire完成签到,获得积分10
27秒前
善学以致用应助junjun采纳,获得10
27秒前
和谐的曼云完成签到,获得积分10
28秒前
31秒前
希望天下0贩的0应助HR112采纳,获得20
31秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228