Health assessment of high-speed train wheels based on group-profile data

火车 主成分分析 可靠性(半导体) 工程类 特征(语言学) 状态维修 集合(抽象数据类型) 逻辑回归 数据挖掘 计算机科学 模式识别(心理学) 人工智能 可靠性工程 机器学习 功率(物理) 物理 哲学 量子力学 地图学 程序设计语言 地理 语言学
作者
Tianli Men,Yan‐Fu Li,Yujun Ji,Xinliang Zhang,Pengfei Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:223: 108496-108496 被引量:10
标识
DOI:10.1016/j.ress.2022.108496
摘要

The rapid development of high-speed trains has brought a significant demand to increase the reliability and optimize the maintenance of train wheels. As the state-of-the-art practice in high-speed trains, the maximal radial run-out and equivalent conicity are two leading health indicators (HIs) to assess the health status of the wheels. However, these two HIs cannot effectively assess the degree of wheel polygonal wear, which has been associated with the service failure of structural components. In the article, we propose a data-driven supervised learning framework for extracting a multi-dimensional HI to assess the condition of the wheels using group-profile data. To the authors ' knowledge, it is the first proposed multi-dimensional HI for the high-speed train wheels. The proposed framework is based on the proper integration of feature extraction and regression techniques, e.g., Hilbert-Huang transform, Functional Principal Component Analysis, and Logistic Regression. A set of real-world high-speed train wheel profile data are collected to validate the proposed framework. The statistical results show that the HI generated from the proposed framework outperforms the traditional HIs in abnormal wheels detection, i.e., classification. Additionally, the conditional probability based on the wheel profile data is proposed in this paper to achieve condition-based maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张云雷的大闸蟹完成签到,获得积分20
刚刚
刚刚
1秒前
2秒前
化学狗完成签到,获得积分10
2秒前
yud完成签到 ,获得积分10
2秒前
3秒前
拼搏思卉发布了新的文献求助10
3秒前
4秒前
雨碎寒江完成签到,获得积分10
4秒前
5秒前
会飞的木头完成签到,获得积分10
5秒前
雪白涵山发布了新的文献求助20
5秒前
shouyu29应助MADKAI采纳,获得10
5秒前
Seiswan发布了新的文献求助10
5秒前
小小菜鸟完成签到,获得积分10
6秒前
6秒前
西西弗斯完成签到,获得积分10
6秒前
KT2440完成签到,获得积分10
7秒前
顾阿秀发布了新的文献求助10
7秒前
7秒前
7秒前
gnr2000完成签到,获得积分0
7秒前
8秒前
8秒前
BareBear应助赖道之采纳,获得10
8秒前
LEMON完成签到,获得积分10
8秒前
Ava应助buuyoo采纳,获得10
9秒前
情怀应助liuwei采纳,获得10
9秒前
aaefv完成签到,获得积分10
9秒前
小小菜鸟发布了新的文献求助10
9秒前
深情安青应助123采纳,获得10
9秒前
赫初晴完成签到 ,获得积分10
9秒前
平淡的亦丝应助明研采纳,获得20
9秒前
11秒前
库外发布了新的文献求助10
12秒前
汉堡包应助清新的冷松采纳,获得10
12秒前
从心应助LiShin采纳,获得10
12秒前
帅气的听莲完成签到,获得积分10
12秒前
英姑应助Areslcy采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762