The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves

边际减排成本 中国 边际成本 自然资源经济学 成本效益分析 部分平衡 环境科学 经济 偏移量(计算机科学) 总成本 可计算一般均衡 温室气体 一般均衡理论 生态学 微观经济学 地理 考古 计算机科学 程序设计语言 生物
作者
Hong-Dian Jiang,Pallav Purohit,Qiao‐Mei Liang,Kangyin Dong,Li-Jing Liu
出处
期刊:Energy Economics [Elsevier]
卷期号:109: 105946-105946 被引量:44
标识
DOI:10.1016/j.eneco.2022.105946
摘要

Incorporating co-benefits of carbon abatement policies can offset costs and inspire greater and faster reductions in emissions in many cases. Most studies on co-benefits are carried out within a partial equilibrium framework and ignore the general equilibrium effects. Therefore, using a computable general equilibrium model, this study incorporated the co-benefits of carbon abatement policies into the carbon marginal abatement cost curves (MACCs), and evaluated the total abatement costs and cost-saving effects for China and India to achieve their Nationally Determined Contributions (NDC) target. The results indicate that the original carbon MACCs of India in any given year are generally higher than those of China; however, after considering the air pollution-related co-benefits, the overall level of the revised MACCs in China is slightly higher than that of India from 2020 to 2030. In the composition of total co-benefits in China and India, the co-benefits of SO2 reductions account for more than 80% of national total co-benefits, followed by the co-benefits of NOx and PM2.5 reductions. Furthermore, if co-benefits are considered, whether it is China or India, the marginal abatement costs and total abatement costs to achieve NDC targets can be effectively offset; but in comparison, India has more significant cost-saving effects, while for China it will be more difficult to reduce emissions in the latter half of the process of achieving NDC targets. These findings are helpful for developing countries in coordinating and strengthening their ability to tackle climate change and environmental protection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
今后应助zhjwu采纳,获得10
2秒前
田様应助憨憨采纳,获得10
2秒前
2秒前
JamesPei应助zoe采纳,获得10
2秒前
黑曜石完成签到,获得积分10
3秒前
Jasper应助ting5260采纳,获得10
3秒前
lbw完成签到,获得积分10
3秒前
4秒前
DYB完成签到,获得积分10
4秒前
4秒前
小陈发布了新的文献求助10
4秒前
可爱的函函应助鱼浅浅采纳,获得10
4秒前
4秒前
小元发布了新的文献求助10
4秒前
5秒前
番茄鱼发布了新的文献求助10
6秒前
6秒前
杨凤霞完成签到,获得积分10
6秒前
oohey发布了新的文献求助10
7秒前
大星星发布了新的文献求助10
8秒前
8秒前
wuxifan发布了新的文献求助10
8秒前
未live完成签到,获得积分10
8秒前
Francis发布了新的文献求助30
9秒前
9秒前
lky完成签到,获得积分10
9秒前
9秒前
FashionBoy应助皮皮蛙采纳,获得10
9秒前
WuZY完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
cnlme发布了新的文献求助10
10秒前
山屿完成签到,获得积分10
10秒前
10秒前
11秒前
暴龙战士完成签到,获得积分20
11秒前
野草发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894