烟气
离子液体
化学
纳米复合材料
超分子化学
选择性
化学工程
亚甲基
吸附
离子键合
热稳定性
离子
催化作用
材料科学
有机化学
纳米技术
晶体结构
工程类
作者
Haonan Wu,Qingchao Li,Yuke Zhang,Mingyue Qiu,Yuequan Liao,Hongxue Xu,Lijuan Shi,Qun Yi
出处
期刊:Fuel
[Elsevier]
日期:2022-08-01
卷期号:322: 124175-124175
被引量:13
标识
DOI:10.1016/j.fuel.2022.124175
摘要
High-efficient capture of CO2 from flue gas at discharged temperatures (100–120 °C) and convert CO2 under mild condition is of vital importance for low energy consumption and emission reduction, which yet remains a great challenge. A one-step supramolecular strategy for incorporating amino-functionalized ionic liquids (AFILs) into ZIF-8 is proposed for capture and conversion of CO2 from flue gas at discharged temperatures. AFILs are attached through metal-coordination interaction between Zn (II) and the NH2 group on AFIL, by which the large BET surface area and high thermal stability inherited from ZIF-8 are maintained well. The nanocomposites with low IL consumptions can rapidly capture CO2 from the flue gas with a high capacity of 2.68 mmol·g−1 within 4 min and efficiently catalyze CO2 into cyclic carbonates with excellent yield (95.6%) and selectivity (97.0%) at 40 °C and 0.1 MPa. In-situ DRIFTS and DFT calculation elucidated the effective synergistic mechanism of multiple active sites (C2-proton on imidazolium ring, imidazolium cation, protons of methyl group, protons of methylene group, Cl anion and Zn (II)) for CO2 adsorption and conversion. The activities in both the CO2 capture and conversion can be easily recycled, endowing the nanocomposites with outstanding practical potentials.
科研通智能强力驱动
Strongly Powered by AbleSci AI