亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass enhancement breast lesions

神经组阅片室 医学 介入放射学 最大强度投影 试验装置 接收机工作特性 核医学 放射科 乳房成像 投影(关系代数) 人工智能 乳腺癌 算法 计算机科学 乳腺摄影术 癌症 神经学 内科学 精神科 血管造影
作者
Lijun Wang,Lufan Chang,Ran Luo,Xuee Cui,Huanhuan Liu,Haoting Wu,Yanhong Chen,Yuzhen Zhang,Chenqing Wu,Fangzhen Li,Hao Liu,Wenbin Guan,Dengbin Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (7): 4857-4867 被引量:22
标识
DOI:10.1007/s00330-022-08553-5
摘要

To build an artificial intelligence (AI) system to classify benign and malignant non-mass enhancement (NME) lesions using maximum intensity projection (MIP) of early post-contrast subtracted breast MR images.This retrospective study collected 965 pure NME lesions (539 benign and 426 malignant) confirmed by histopathology or follow-up in 903 women. The 754 NME lesions acquired by one MR scanner were randomly split into the training set, validation set, and test set A (482/121/151 lesions). The 211 NME lesions acquired by another MR scanner were used as test set B. The AI system was developed using ResNet-50 with the axial and sagittal MIP images. One senior and one junior radiologist reviewed the MIP images of each case independently and rated its Breast Imaging Reporting and Data System category. The performance of the AI system and the radiologists was evaluated using the area under the receiver operating characteristic curve (AUC).The AI system yielded AUCs of 0.859 and 0.816 in the test sets A and B, respectively. The AI system achieved comparable performance as the senior radiologist (p = 0.558, p = 0.041) and outperformed the junior radiologist (p < 0.001, p = 0.009) in both test sets A and B. After AI assistance, the AUC of the junior radiologist increased from 0.740 to 0.862 in test set A (p < 0.001) and from 0.732 to 0.843 in test set B (p < 0.001).Our MIP-based AI system yielded good applicability in classifying NME lesions in breast MRI and can assist the junior radiologist achieve better performance.• Our MIP-based AI system yielded good applicability in the dataset both from the same and a different MR scanner in predicting malignant NME lesions. • The AI system achieved comparable diagnostic performance with the senior radiologist and outperformed the junior radiologist. • This AI system can assist the junior radiologist achieve better performance in the classification of NME lesions in MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zznzn发布了新的文献求助10
6秒前
11秒前
15秒前
迷人宛亦发布了新的文献求助10
15秒前
23秒前
36秒前
kzf丶bryant发布了新的文献求助10
39秒前
50秒前
田様应助迷人宛亦采纳,获得10
56秒前
1分钟前
1分钟前
cpf发布了新的文献求助10
1分钟前
聪聪完成签到,获得积分10
1分钟前
聪聪发布了新的文献求助10
1分钟前
烟花应助kzf丶bryant采纳,获得10
1分钟前
cpf完成签到,获得积分10
1分钟前
1分钟前
1分钟前
爆米花应助甜青提采纳,获得10
1分钟前
沫雨发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
甜青提发布了新的文献求助10
1分钟前
小马甲应助aobadong采纳,获得10
1分钟前
pups发布了新的文献求助10
2分钟前
2分钟前
aobadong发布了新的文献求助10
2分钟前
zho关闭了zho文献求助
2分钟前
aobadong完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
爆米花应助pups采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671189
求助须知:如何正确求助?哪些是违规求助? 4911434
关于积分的说明 15134190
捐赠科研通 4829942
什么是DOI,文献DOI怎么找? 2586543
邀请新用户注册赠送积分活动 1540204
关于科研通互助平台的介绍 1498392