神经组阅片室
医学
介入放射学
最大强度投影
试验装置
接收机工作特性
核医学
放射科
乳房成像
投影(关系代数)
人工智能
乳腺癌
算法
计算机科学
乳腺摄影术
癌症
神经学
内科学
精神科
血管造影
作者
Lijun Wang,Lufan Chang,Ran Luo,Xuee Cui,Huanhuan Liu,Haoting Wu,Yanhong Chen,Yuzhen Zhang,Chenqing Wu,Fangzhen Li,Hao Liu,Wenbin Guan,Dengbin Wang
标识
DOI:10.1007/s00330-022-08553-5
摘要
To build an artificial intelligence (AI) system to classify benign and malignant non-mass enhancement (NME) lesions using maximum intensity projection (MIP) of early post-contrast subtracted breast MR images.This retrospective study collected 965 pure NME lesions (539 benign and 426 malignant) confirmed by histopathology or follow-up in 903 women. The 754 NME lesions acquired by one MR scanner were randomly split into the training set, validation set, and test set A (482/121/151 lesions). The 211 NME lesions acquired by another MR scanner were used as test set B. The AI system was developed using ResNet-50 with the axial and sagittal MIP images. One senior and one junior radiologist reviewed the MIP images of each case independently and rated its Breast Imaging Reporting and Data System category. The performance of the AI system and the radiologists was evaluated using the area under the receiver operating characteristic curve (AUC).The AI system yielded AUCs of 0.859 and 0.816 in the test sets A and B, respectively. The AI system achieved comparable performance as the senior radiologist (p = 0.558, p = 0.041) and outperformed the junior radiologist (p < 0.001, p = 0.009) in both test sets A and B. After AI assistance, the AUC of the junior radiologist increased from 0.740 to 0.862 in test set A (p < 0.001) and from 0.732 to 0.843 in test set B (p < 0.001).Our MIP-based AI system yielded good applicability in classifying NME lesions in breast MRI and can assist the junior radiologist achieve better performance.• Our MIP-based AI system yielded good applicability in the dataset both from the same and a different MR scanner in predicting malignant NME lesions. • The AI system achieved comparable diagnostic performance with the senior radiologist and outperformed the junior radiologist. • This AI system can assist the junior radiologist achieve better performance in the classification of NME lesions in MRI.
科研通智能强力驱动
Strongly Powered by AbleSci AI