An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass enhancement breast lesions

神经组阅片室 医学 介入放射学 最大强度投影 试验装置 接收机工作特性 核医学 放射科 乳房成像 投影(关系代数) 人工智能 乳腺癌 算法 计算机科学 乳腺摄影术 癌症 神经学 内科学 精神科 血管造影
作者
Lijun Wang,Lufan Chang,Ran Luo,Xuee Cui,Huanhuan Liu,Haoting Wu,Yanhong Chen,Yuzhen Zhang,Chenqing Wu,Fangzhen Li,Hao Liu,Wenbin Guan,Dengbin Wang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (7): 4857-4867 被引量:19
标识
DOI:10.1007/s00330-022-08553-5
摘要

To build an artificial intelligence (AI) system to classify benign and malignant non-mass enhancement (NME) lesions using maximum intensity projection (MIP) of early post-contrast subtracted breast MR images.This retrospective study collected 965 pure NME lesions (539 benign and 426 malignant) confirmed by histopathology or follow-up in 903 women. The 754 NME lesions acquired by one MR scanner were randomly split into the training set, validation set, and test set A (482/121/151 lesions). The 211 NME lesions acquired by another MR scanner were used as test set B. The AI system was developed using ResNet-50 with the axial and sagittal MIP images. One senior and one junior radiologist reviewed the MIP images of each case independently and rated its Breast Imaging Reporting and Data System category. The performance of the AI system and the radiologists was evaluated using the area under the receiver operating characteristic curve (AUC).The AI system yielded AUCs of 0.859 and 0.816 in the test sets A and B, respectively. The AI system achieved comparable performance as the senior radiologist (p = 0.558, p = 0.041) and outperformed the junior radiologist (p < 0.001, p = 0.009) in both test sets A and B. After AI assistance, the AUC of the junior radiologist increased from 0.740 to 0.862 in test set A (p < 0.001) and from 0.732 to 0.843 in test set B (p < 0.001).Our MIP-based AI system yielded good applicability in classifying NME lesions in breast MRI and can assist the junior radiologist achieve better performance.• Our MIP-based AI system yielded good applicability in the dataset both from the same and a different MR scanner in predicting malignant NME lesions. • The AI system achieved comparable diagnostic performance with the senior radiologist and outperformed the junior radiologist. • This AI system can assist the junior radiologist achieve better performance in the classification of NME lesions in MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
懒YY捉小J完成签到 ,获得积分10
刚刚
大橙子完成签到,获得积分20
刚刚
1秒前
1秒前
羞涩的雁荷完成签到,获得积分10
2秒前
山茶发布了新的文献求助10
3秒前
Bruce发布了新的文献求助10
4秒前
CC发布了新的文献求助10
4秒前
5秒前
所所应助冷酷的玉米采纳,获得10
5秒前
6秒前
伯赏满天发布了新的文献求助150
6秒前
6秒前
7秒前
学术达人应助whatever采纳,获得200
7秒前
方东发布了新的文献求助30
8秒前
上官若男应助乌江上次采纳,获得10
9秒前
搜集达人应助活泼洙采纳,获得10
9秒前
赫幼蓉完成签到,获得积分10
10秒前
10秒前
Rondab应助心杨采纳,获得10
10秒前
Moke发布了新的文献求助10
11秒前
苹果鸭子发布了新的文献求助10
12秒前
在水一方应助开心超人采纳,获得10
12秒前
两个我发布了新的文献求助10
13秒前
12345完成签到,获得积分10
13秒前
CC完成签到,获得积分10
13秒前
乌江上次完成签到,获得积分10
14秒前
所所应助木直采纳,获得30
17秒前
陈宇发布了新的文献求助10
17秒前
bluueboom完成签到,获得积分20
18秒前
追寻冰淇淋给yang123的求助进行了留言
18秒前
19秒前
顾矜应助西灵壹采纳,获得10
20秒前
田様应助恬恬采纳,获得10
20秒前
山茶完成签到,获得积分20
22秒前
22秒前
隐形曼青应助猪猪hero采纳,获得10
22秒前
wangliang0329完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771