An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass enhancement breast lesions

神经组阅片室 医学 介入放射学 最大强度投影 试验装置 接收机工作特性 核医学 放射科 乳房成像 投影(关系代数) 人工智能 乳腺癌 算法 计算机科学 乳腺摄影术 癌症 神经学 内科学 精神科 血管造影
作者
Lijun Wang,Lufan Chang,Ran Luo,Xuee Cui,Huanhuan Liu,Haoting Wu,Yanhong Chen,Yuzhen Zhang,Chenqing Wu,Fangzhen Li,Hao Liu,Wenbin Guan,Dengbin Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (7): 4857-4867 被引量:26
标识
DOI:10.1007/s00330-022-08553-5
摘要

To build an artificial intelligence (AI) system to classify benign and malignant non-mass enhancement (NME) lesions using maximum intensity projection (MIP) of early post-contrast subtracted breast MR images.This retrospective study collected 965 pure NME lesions (539 benign and 426 malignant) confirmed by histopathology or follow-up in 903 women. The 754 NME lesions acquired by one MR scanner were randomly split into the training set, validation set, and test set A (482/121/151 lesions). The 211 NME lesions acquired by another MR scanner were used as test set B. The AI system was developed using ResNet-50 with the axial and sagittal MIP images. One senior and one junior radiologist reviewed the MIP images of each case independently and rated its Breast Imaging Reporting and Data System category. The performance of the AI system and the radiologists was evaluated using the area under the receiver operating characteristic curve (AUC).The AI system yielded AUCs of 0.859 and 0.816 in the test sets A and B, respectively. The AI system achieved comparable performance as the senior radiologist (p = 0.558, p = 0.041) and outperformed the junior radiologist (p < 0.001, p = 0.009) in both test sets A and B. After AI assistance, the AUC of the junior radiologist increased from 0.740 to 0.862 in test set A (p < 0.001) and from 0.732 to 0.843 in test set B (p < 0.001).Our MIP-based AI system yielded good applicability in classifying NME lesions in breast MRI and can assist the junior radiologist achieve better performance.• Our MIP-based AI system yielded good applicability in the dataset both from the same and a different MR scanner in predicting malignant NME lesions. • The AI system achieved comparable diagnostic performance with the senior radiologist and outperformed the junior radiologist. • This AI system can assist the junior radiologist achieve better performance in the classification of NME lesions in MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
庄杰发布了新的文献求助10
刚刚
安琦发布了新的文献求助10
刚刚
gong发布了新的文献求助10
刚刚
NexusExplorer应助动听的谷秋采纳,获得10
刚刚
雨雨应助王小可采纳,获得10
刚刚
英俊的铭应助YZ采纳,获得10
1秒前
White.K发布了新的文献求助10
1秒前
uu关注了科研通微信公众号
1秒前
springlover完成签到,获得积分10
1秒前
约定发布了新的文献求助10
1秒前
bkagyin应助xxx采纳,获得10
1秒前
萨芬撒完成签到,获得积分10
1秒前
Xixicccccccc发布了新的文献求助10
1秒前
专注的问寒举报MC番薯求助涉嫌违规
2秒前
CipherSage应助Alan采纳,获得10
2秒前
xcm77发布了新的文献求助10
2秒前
释棱完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
Ayn发布了新的文献求助10
3秒前
You发布了新的文献求助10
3秒前
4秒前
6秒前
FashionBoy应助科研民工采纳,获得10
7秒前
灿烂千阳完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
NXK发布了新的文献求助10
8秒前
8秒前
8秒前
SciGPT应助no1isme采纳,获得10
8秒前
瓜瓜发布了新的文献求助10
8秒前
饱满的诗霜关注了科研通微信公众号
9秒前
cc应助wing采纳,获得20
9秒前
211发布了新的文献求助10
9秒前
修越完成签到,获得积分10
10秒前
CodeCraft应助Regina采纳,获得10
10秒前
情怀应助xixilamn采纳,获得10
10秒前
壮壮发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932