An artificial intelligence system using maximum intensity projection MR images facilitates classification of non-mass enhancement breast lesions

神经组阅片室 医学 介入放射学 最大强度投影 试验装置 接收机工作特性 核医学 放射科 乳房成像 投影(关系代数) 人工智能 乳腺癌 算法 计算机科学 乳腺摄影术 癌症 神经学 内科学 精神科 血管造影
作者
Lijun Wang,Lufan Chang,Ran Luo,Xuee Cui,Huanhuan Liu,Haoting Wu,Yanhong Chen,Yuzhen Zhang,Chenqing Wu,Fangzhen Li,Hao Liu,Wenbin Guan,Dengbin Wang
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (7): 4857-4867 被引量:17
标识
DOI:10.1007/s00330-022-08553-5
摘要

To build an artificial intelligence (AI) system to classify benign and malignant non-mass enhancement (NME) lesions using maximum intensity projection (MIP) of early post-contrast subtracted breast MR images.This retrospective study collected 965 pure NME lesions (539 benign and 426 malignant) confirmed by histopathology or follow-up in 903 women. The 754 NME lesions acquired by one MR scanner were randomly split into the training set, validation set, and test set A (482/121/151 lesions). The 211 NME lesions acquired by another MR scanner were used as test set B. The AI system was developed using ResNet-50 with the axial and sagittal MIP images. One senior and one junior radiologist reviewed the MIP images of each case independently and rated its Breast Imaging Reporting and Data System category. The performance of the AI system and the radiologists was evaluated using the area under the receiver operating characteristic curve (AUC).The AI system yielded AUCs of 0.859 and 0.816 in the test sets A and B, respectively. The AI system achieved comparable performance as the senior radiologist (p = 0.558, p = 0.041) and outperformed the junior radiologist (p < 0.001, p = 0.009) in both test sets A and B. After AI assistance, the AUC of the junior radiologist increased from 0.740 to 0.862 in test set A (p < 0.001) and from 0.732 to 0.843 in test set B (p < 0.001).Our MIP-based AI system yielded good applicability in classifying NME lesions in breast MRI and can assist the junior radiologist achieve better performance.• Our MIP-based AI system yielded good applicability in the dataset both from the same and a different MR scanner in predicting malignant NME lesions. • The AI system achieved comparable diagnostic performance with the senior radiologist and outperformed the junior radiologist. • This AI system can assist the junior radiologist achieve better performance in the classification of NME lesions in MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jxy09156发布了新的文献求助10
刚刚
儒雅大象发布了新的文献求助10
刚刚
啦熊发布了新的文献求助10
刚刚
3秒前
侃侃关注了科研通微信公众号
3秒前
YUYUYU应助家湘采纳,获得30
4秒前
芋头粽子发布了新的文献求助10
5秒前
wei完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
小喵发布了新的文献求助10
8秒前
9秒前
Wind发布了新的文献求助10
9秒前
墨墨完成签到,获得积分10
10秒前
啦熊完成签到,获得积分10
12秒前
12秒前
12秒前
Ava应助云隐采纳,获得10
13秒前
Ars发布了新的文献求助10
14秒前
酷酷的老太完成签到,获得积分10
14秒前
15秒前
abao发布了新的文献求助10
16秒前
无花果应助Wind采纳,获得10
17秒前
嗯哼完成签到 ,获得积分10
18秒前
侃侃发布了新的文献求助10
18秒前
wangxia发布了新的文献求助20
19秒前
20秒前
Mlwwq发布了新的文献求助10
21秒前
向日葵应助nn采纳,获得10
21秒前
zhanzhanzhan完成签到,获得积分10
21秒前
22秒前
24秒前
caicai发布了新的文献求助10
24秒前
隐形曼青应助龙卷风采纳,获得10
25秒前
zhangxinan完成签到,获得积分10
25秒前
知止发布了新的文献求助10
27秒前
whx完成签到 ,获得积分10
28秒前
朱一龙完成签到,获得积分10
29秒前
whisper完成签到 ,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143695
求助须知:如何正确求助?哪些是违规求助? 2795199
关于积分的说明 7813564
捐赠科研通 2451202
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601393