Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free Energy, and Solvation Enthalpy

溶剂化 隐溶剂化 化学 热力学 计算机科学 统计物理学 机器学习 物理 分子 有机化学
作者
Yunsie Chung,Florence H. Vermeire,Haoyang Wu,Pierre J. Walker,Michael H. Abraham,William H. Green
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (3): 433-446 被引量:75
标识
DOI:10.1021/acs.jcim.1c01103
摘要

We present a group contribution method (SoluteGC) and a machine learning model (SoluteML) to predict the Abraham solute parameters, as well as a machine learning model (DirectML) to predict solvation free energy and enthalpy at 298 K. The proposed group contribution method uses atom-centered functional groups with corrections for ring and polycyclic strain while the machine learning models adopt a directed message passing neural network. The solute parameters predicted from SoluteGC and SoluteML are used to calculate solvation energy and enthalpy via linear free energy relationships. Extensive data sets containing 8366 solute parameters, 20,253 solvation free energies, and 6322 solvation enthalpies are compiled in this work to train the models. The three models are each evaluated on the same test sets using both random and substructure-based solute splits for solvation energy and enthalpy predictions. The results show that the DirectML model is superior to the SoluteML and SoluteGC models for both predictions and can provide accuracy comparable to that of advanced quantum chemistry methods. Yet, even though the DirectML model performs better in general, all three models are useful for various purposes. Uncertain predicted values can be identified by comparing the three models, and when the 3 models are combined together, they can provide even more accurate predictions than any one of them individually. Finally, we present our compiled solute parameter, solvation energy, and solvation enthalpy databases (SoluteDB, dGsolvDBx, dHsolvDB) and provide public access to our final prediction models through a simple web-based tool, software packages, and source code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
Wtj发布了新的文献求助10
3秒前
小二郎应助najibveto采纳,获得10
3秒前
5秒前
5秒前
科研通AI2S应助issac_wan采纳,获得10
6秒前
bigfish发布了新的文献求助10
6秒前
8秒前
自觉的语海应助owoow采纳,获得10
8秒前
杭剑成发布了新的文献求助100
10秒前
yy完成签到,获得积分10
11秒前
汉堡包应助强健的小笼包采纳,获得10
11秒前
12秒前
邹冰洁发布了新的文献求助10
12秒前
寻舟者完成签到,获得积分10
12秒前
霸气的板栗完成签到,获得积分10
12秒前
直率的大开完成签到 ,获得积分10
13秒前
14秒前
李繁蕊完成签到,获得积分10
14秒前
17秒前
Wtj完成签到,获得积分10
19秒前
orixero应助liu采纳,获得10
19秒前
20秒前
cs完成签到,获得积分10
20秒前
21秒前
熊二的蜂蜜罐头完成签到,获得积分10
21秒前
22秒前
狒狒2022完成签到,获得积分10
22秒前
英姑应助hfut_lee采纳,获得10
23秒前
可靠夏彤完成签到 ,获得积分10
23秒前
李健应助lllllll采纳,获得10
24秒前
Owen应助gj2221423采纳,获得10
24秒前
26秒前
26秒前
小韩发布了新的文献求助10
27秒前
颜千琴完成签到,获得积分20
27秒前
钱多多完成签到,获得积分10
27秒前
gong完成签到,获得积分20
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076615
求助须知:如何正确求助?哪些是违规求助? 2729583
关于积分的说明 7509104
捐赠科研通 2377778
什么是DOI,文献DOI怎么找? 1260780
科研通“疑难数据库(出版商)”最低求助积分说明 611183
版权声明 597203