The value of artificial intelligence techniques in predicting pancreatic ductal adenocarcinoma with EUS images: A meta-analysis and systematic review

医学 胰腺癌 漏斗图 荟萃分析 诊断优势比 置信区间 优势比 接收机工作特性 诊断试验中的似然比 内科学 内镜超声 出版偏见 癌症 科克伦图书馆 胃肠病学 放射科
作者
Zhaoshen Li,Hua Yin,Xiaoli Yang,Liqi Sun,Peng Pan,Lisi Peng,Keliang Li,Deyu Zhang,Fang Cui,Chuanchao Xia,Haojie Huang
出处
期刊:Endoscopic ultrasound [Hong Kong STM Publishing Co., Ltd.]
被引量:6
标识
DOI:10.4103/eus-d-21-00131
摘要

ABSTRACT Conventional EUS plays an important role in identifying pancreatic cancer. However, the accuracy of EUS is strongly influenced by the operator’s experience in performing EUS. Artificial intelligence (AI) is increasingly being used in various clinical diagnoses, especially in terms of image classification. This study aimed to evaluate the diagnostic test accuracy of AI for the prediction of pancreatic cancer using EUS images. We searched the Embase, PubMed, and Cochrane Library databases to identify studies that used endoscopic ultrasound images of pancreatic cancer and AI to predict the diagnostic accuracy of pancreatic cancer. Two reviewers extracted the data independently. The risk of bias of eligible studies was assessed using a Deek funnel plot. The quality of the included studies was measured by the QUDAS-2 tool. Seven studies involving 1110 participants were included: 634 participants with pancreatic cancer and 476 participants with nonpancreatic cancer. The accuracy of the AI for the prediction of pancreatic cancer (area under the curve) was 0.95 (95% confidence interval [CI], 0.93–0.97), with a corresponding pooled sensitivity of 93% (95% CI, 0.90-0.95), specificity of 90% (95% CI, 0.8-0.95), positive likelihood ratio 9.1 (95% CI 4.4-18.6), negative likelihood ratio 0.08 (95% CI 0.06-0.11), and diagnostic odds ratio 114 (95% CI 56–236). The methodological quality in each study was found to be the source of heterogeneity in the meta-regression combined model, which was statistically significant ( P = 0.01). There was no evidence of publication bias. The accuracy of AI in diagnosing pancreatic cancer appears to be reliable. Further research and investment in AI could lead to substantial improvements in screening and early diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的惜天完成签到,获得积分10
刚刚
Lynn发布了新的文献求助30
刚刚
刚刚
lunjianchi完成签到,获得积分10
刚刚
YY关闭了YY文献求助
刚刚
CHBW完成签到,获得积分10
1秒前
瞿采枫完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
英俊的铭应助huntme采纳,获得10
4秒前
上官若男应助Puokn采纳,获得10
4秒前
迷途发布了新的文献求助10
4秒前
dawn完成签到,获得积分10
4秒前
机灵忆安完成签到,获得积分10
4秒前
5秒前
asdfj应助cjjjjjj采纳,获得30
5秒前
充电宝应助111采纳,获得10
5秒前
ATT发布了新的文献求助10
6秒前
林夕发布了新的文献求助30
6秒前
7秒前
谨慎青亦发布了新的文献求助10
7秒前
hl应助飘逸鼠标采纳,获得10
7秒前
8秒前
沉静的店员完成签到,获得积分10
8秒前
9秒前
ZZCrazy发布了新的文献求助10
9秒前
10秒前
tianzml0应助青黛采纳,获得10
10秒前
bailuoshiqi发布了新的文献求助10
10秒前
weiwei发布了新的文献求助10
10秒前
范范完成签到,获得积分10
11秒前
hjx发布了新的文献求助10
13秒前
周四一完成签到,获得积分10
13秒前
hong发布了新的文献求助10
14秒前
研友_VZG7GZ应助Mr.w采纳,获得10
14秒前
MyMiao发布了新的文献求助10
15秒前
1233发布了新的文献求助10
15秒前
18秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608