The value of artificial intelligence techniques in predicting pancreatic ductal adenocarcinoma with EUS images: A meta-analysis and systematic review

医学 胰腺癌 漏斗图 荟萃分析 诊断优势比 置信区间 优势比 接收机工作特性 诊断试验中的似然比 内科学 内镜超声 出版偏见 癌症 科克伦图书馆 胃肠病学 放射科
作者
Zhaoshen Li,Hua Yin,Xiaoli Yang,Liqi Sun,Peng Pan,Lisi Peng,Keliang Li,Deyu Zhang,Fang Cui,Chuanchao Xia,Haojie Huang
出处
期刊:Endoscopic ultrasound [Hong Kong STM Publishing Co., Ltd.]
被引量:6
标识
DOI:10.4103/eus-d-21-00131
摘要

ABSTRACT Conventional EUS plays an important role in identifying pancreatic cancer. However, the accuracy of EUS is strongly influenced by the operator’s experience in performing EUS. Artificial intelligence (AI) is increasingly being used in various clinical diagnoses, especially in terms of image classification. This study aimed to evaluate the diagnostic test accuracy of AI for the prediction of pancreatic cancer using EUS images. We searched the Embase, PubMed, and Cochrane Library databases to identify studies that used endoscopic ultrasound images of pancreatic cancer and AI to predict the diagnostic accuracy of pancreatic cancer. Two reviewers extracted the data independently. The risk of bias of eligible studies was assessed using a Deek funnel plot. The quality of the included studies was measured by the QUDAS-2 tool. Seven studies involving 1110 participants were included: 634 participants with pancreatic cancer and 476 participants with nonpancreatic cancer. The accuracy of the AI for the prediction of pancreatic cancer (area under the curve) was 0.95 (95% confidence interval [CI], 0.93–0.97), with a corresponding pooled sensitivity of 93% (95% CI, 0.90-0.95), specificity of 90% (95% CI, 0.8-0.95), positive likelihood ratio 9.1 (95% CI 4.4-18.6), negative likelihood ratio 0.08 (95% CI 0.06-0.11), and diagnostic odds ratio 114 (95% CI 56–236). The methodological quality in each study was found to be the source of heterogeneity in the meta-regression combined model, which was statistically significant ( P = 0.01). There was no evidence of publication bias. The accuracy of AI in diagnosing pancreatic cancer appears to be reliable. Further research and investment in AI could lead to substantial improvements in screening and early diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxl发布了新的文献求助10
1秒前
smile完成签到,获得积分20
2秒前
Shuo Yang完成签到,获得积分10
2秒前
2秒前
伊酒发布了新的文献求助10
2秒前
蓉儿完成签到 ,获得积分10
3秒前
动人的梦之完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
小小爱吃百香果完成签到,获得积分20
6秒前
薪炭林应助空心采纳,获得30
6秒前
宫宛儿完成签到,获得积分10
6秒前
smile发布了新的文献求助10
7秒前
永远少年发布了新的文献求助10
8秒前
跳跃完成签到,获得积分20
8秒前
8秒前
9秒前
9秒前
9秒前
sansan发布了新的文献求助10
9秒前
tassssadar完成签到,获得积分10
10秒前
10秒前
通辽小判官完成签到,获得积分10
11秒前
曲蔚然发布了新的文献求助30
12秒前
liuxl完成签到,获得积分10
12秒前
长隆完成签到 ,获得积分10
14秒前
14秒前
852应助YukiXu采纳,获得10
15秒前
15秒前
jijizz发布了新的文献求助10
15秒前
yyyyy发布了新的文献求助10
15秒前
zhappy发布了新的文献求助20
15秒前
16秒前
稳重的八宝粥完成签到 ,获得积分10
17秒前
17秒前
xx关闭了xx文献求助
17秒前
18秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808