A transfer learning approach to few-shot segmentation of novel white matter tracts

分割 人工智能 计算机科学 市场细分 学习迁移 卷积神经网络 模式识别(心理学) 白质 深度学习 任务(项目管理) 计算机视觉 磁共振成像 业务 放射科 医学 经济 营销 管理
作者
Qi Lu,Wan Liu,Zhizheng Zhuo,Yuxing Li,Yunyun Duan,Pinnan Yu,Liying Qu,Chuyang Ye,Yaou Liu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:79: 102454-102454 被引量:17
标识
DOI:10.1016/j.media.2022.102454
摘要

Convolutional neural networks (CNNs) have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). The training of the CNN-based segmentation model generally requires a large number of manual delineations of WM tracts, which can be expensive and time-consuming. Although it is possible to carefully curate abundant training data for a set of WM tracts of interest, there can also be novel WM tracts-i.e., WM tracts that are not included in the existing annotated WM tracts-that are specific to a new scientific problem, and it is desired that the novel WM tracts can be segmented without repeating the laborious collection of a large number of manual delineations for these tracts. One possible solution to the problem is to transfer the knowledge learned for segmenting existing WM tracts to the segmentation of novel WM tracts with a fine-tuning strategy, where a CNN pretrained for segmenting existing WM tracts is fine-tuned with only a few annotated scans to segment the novel WM tracts. However, in classic fine-tuning, the information in the last task-specific layer for segmenting existing WM tracts is completely discarded. In this work, based on the pretraining and fine-tuning framework, we propose an improved transfer learning approach to the segmentation of novel WM tracts in the few-shot setting, where all knowledge in the pretrained model is incorporated into the fine-tuning procedure. Specifically, from the weights of the pretrained task-specific layer for segmenting existing WM tracts, we derive a better initialization of the last task-specific layer for the target model that segments novel WM tracts. In addition, to allow further improvement of the initialization of the last layer and thus the segmentation performance in the few-shot setting, we develop a simple yet effective data augmentation strategy that generates synthetic annotated images with tract-aware image mixing. To validate the proposed method, we performed experiments on brain dMRI scans from public and private datasets under various experimental settings, and the results indicate that our method improves the performance of few-shot segmentation of novel WM tracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LXP发布了新的文献求助10
1秒前
1秒前
1秒前
balabal完成签到,获得积分10
1秒前
迷路惋清发布了新的文献求助10
2秒前
义气梦山发布了新的文献求助10
3秒前
乐乐应助烩面大师采纳,获得10
3秒前
大不了退学完成签到 ,获得积分10
3秒前
朴素的书琴完成签到,获得积分10
4秒前
SYLH应助香蕉采纳,获得20
4秒前
科研通AI2S应助个性蓝采纳,获得10
5秒前
bkagyin应助wwww采纳,获得10
5秒前
SciGPT应助imss1采纳,获得10
5秒前
chenxuan完成签到,获得积分10
5秒前
BINGOFAN发布了新的文献求助10
6秒前
诚诚诚发布了新的文献求助10
6秒前
啊啊发布了新的文献求助30
6秒前
SHAO应助SEM小菜鸡采纳,获得30
7秒前
山海完成签到,获得积分10
7秒前
无花果应助结实大象采纳,获得10
7秒前
8秒前
8秒前
坦率尔蝶完成签到 ,获得积分10
9秒前
薛建伟发布了新的文献求助10
9秒前
zzz完成签到 ,获得积分10
9秒前
linkoop发布了新的文献求助10
10秒前
汉堡包应助yy采纳,获得10
10秒前
34101127完成签到,获得积分0
11秒前
imss1完成签到,获得积分10
11秒前
11秒前
迷路惋清完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
希望天下0贩的0应助balabal采纳,获得10
12秒前
紧张的羿发布了新的文献求助10
12秒前
老实鞯完成签到 ,获得积分10
13秒前
果891867430完成签到 ,获得积分10
13秒前
CodeCraft应助ericzhouxx采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099