A transfer learning approach to few-shot segmentation of novel white matter tracts

分割 人工智能 计算机科学 市场细分 学习迁移 卷积神经网络 模式识别(心理学) 白质 深度学习 任务(项目管理) 计算机视觉 磁共振成像 业务 放射科 医学 经济 营销 管理
作者
Qi Lu,Wan Liu,Zhizheng Zhuo,Yuxing Li,Yunyun Duan,Pinnan Yu,Liying Qu,Chuyang Ye,Yaou Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:79: 102454-102454 被引量:17
标识
DOI:10.1016/j.media.2022.102454
摘要

Convolutional neural networks (CNNs) have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). The training of the CNN-based segmentation model generally requires a large number of manual delineations of WM tracts, which can be expensive and time-consuming. Although it is possible to carefully curate abundant training data for a set of WM tracts of interest, there can also be novel WM tracts-i.e., WM tracts that are not included in the existing annotated WM tracts-that are specific to a new scientific problem, and it is desired that the novel WM tracts can be segmented without repeating the laborious collection of a large number of manual delineations for these tracts. One possible solution to the problem is to transfer the knowledge learned for segmenting existing WM tracts to the segmentation of novel WM tracts with a fine-tuning strategy, where a CNN pretrained for segmenting existing WM tracts is fine-tuned with only a few annotated scans to segment the novel WM tracts. However, in classic fine-tuning, the information in the last task-specific layer for segmenting existing WM tracts is completely discarded. In this work, based on the pretraining and fine-tuning framework, we propose an improved transfer learning approach to the segmentation of novel WM tracts in the few-shot setting, where all knowledge in the pretrained model is incorporated into the fine-tuning procedure. Specifically, from the weights of the pretrained task-specific layer for segmenting existing WM tracts, we derive a better initialization of the last task-specific layer for the target model that segments novel WM tracts. In addition, to allow further improvement of the initialization of the last layer and thus the segmentation performance in the few-shot setting, we develop a simple yet effective data augmentation strategy that generates synthetic annotated images with tract-aware image mixing. To validate the proposed method, we performed experiments on brain dMRI scans from public and private datasets under various experimental settings, and the results indicate that our method improves the performance of few-shot segmentation of novel WM tracts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyw发布了新的文献求助10
刚刚
夜神月发布了新的文献求助10
刚刚
刚刚
刚刚
千山暮雪完成签到 ,获得积分10
刚刚
轻松大地完成签到,获得积分10
1秒前
1秒前
1秒前
李爱国应助sia采纳,获得10
2秒前
2秒前
2秒前
2秒前
科研通AI6应助学术小白采纳,获得10
3秒前
德行天下完成签到,获得积分10
3秒前
爆米花应助DG采纳,获得10
3秒前
不认识发布了新的文献求助10
5秒前
xiaoyan发布了新的文献求助10
5秒前
5秒前
5秒前
Orange应助yang采纳,获得10
6秒前
鸡柳先知发布了新的文献求助10
6秒前
Disappear完成签到,获得积分10
6秒前
6秒前
科研通AI6应助阔达晓博采纳,获得10
6秒前
6秒前
BigBai发布了新的文献求助10
6秒前
Jian发布了新的文献求助10
6秒前
科研通AI6应助犹豫忆曼采纳,获得10
7秒前
raphie发布了新的文献求助30
7秒前
7秒前
7秒前
Kiwi发布了新的文献求助10
7秒前
可爱的函函应助斑马采纳,获得10
8秒前
赘婿应助dghcmh采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
9秒前
辣辣应助科研通管家采纳,获得10
9秒前
Young应助科研通管家采纳,获得20
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587131
求助须知:如何正确求助?哪些是违规求助? 4670288
关于积分的说明 14782246
捐赠科研通 4622203
什么是DOI,文献DOI怎么找? 2531157
邀请新用户注册赠送积分活动 1499937
关于科研通互助平台的介绍 1468024