A transfer learning approach to few-shot segmentation of novel white matter tracts

分割 人工智能 计算机科学 市场细分 学习迁移 卷积神经网络 模式识别(心理学) 白质 深度学习 任务(项目管理) 计算机视觉 磁共振成像 业务 放射科 医学 经济 营销 管理
作者
Qi Lu,Wan Liu,Zhizheng Zhuo,Yuxing Li,Yunyun Duan,Pinnan Yu,Liying Qu,Chuyang Ye,Yaou Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:79: 102454-102454 被引量:15
标识
DOI:10.1016/j.media.2022.102454
摘要

Convolutional neural networks (CNNs) have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). The training of the CNN-based segmentation model generally requires a large number of manual delineations of WM tracts, which can be expensive and time-consuming. Although it is possible to carefully curate abundant training data for a set of WM tracts of interest, there can also be novel WM tracts-i.e., WM tracts that are not included in the existing annotated WM tracts-that are specific to a new scientific problem, and it is desired that the novel WM tracts can be segmented without repeating the laborious collection of a large number of manual delineations for these tracts. One possible solution to the problem is to transfer the knowledge learned for segmenting existing WM tracts to the segmentation of novel WM tracts with a fine-tuning strategy, where a CNN pretrained for segmenting existing WM tracts is fine-tuned with only a few annotated scans to segment the novel WM tracts. However, in classic fine-tuning, the information in the last task-specific layer for segmenting existing WM tracts is completely discarded. In this work, based on the pretraining and fine-tuning framework, we propose an improved transfer learning approach to the segmentation of novel WM tracts in the few-shot setting, where all knowledge in the pretrained model is incorporated into the fine-tuning procedure. Specifically, from the weights of the pretrained task-specific layer for segmenting existing WM tracts, we derive a better initialization of the last task-specific layer for the target model that segments novel WM tracts. In addition, to allow further improvement of the initialization of the last layer and thus the segmentation performance in the few-shot setting, we develop a simple yet effective data augmentation strategy that generates synthetic annotated images with tract-aware image mixing. To validate the proposed method, we performed experiments on brain dMRI scans from public and private datasets under various experimental settings, and the results indicate that our method improves the performance of few-shot segmentation of novel WM tracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gengsumin完成签到,获得积分10
刚刚
JJH完成签到,获得积分20
11秒前
12秒前
潇洒的语蝶完成签到 ,获得积分10
14秒前
JJH发布了新的文献求助10
15秒前
zsl发布了新的文献求助10
18秒前
zhenliu完成签到 ,获得积分10
19秒前
euphoria完成签到,获得积分10
21秒前
zyw完成签到 ,获得积分10
24秒前
Owen应助无奈梦岚采纳,获得10
26秒前
zsl完成签到,获得积分10
28秒前
自有龙骧完成签到 ,获得积分10
29秒前
Serein完成签到,获得积分10
31秒前
光亮青柏完成签到 ,获得积分10
34秒前
活泼的寒安完成签到 ,获得积分10
40秒前
吴荣方完成签到 ,获得积分10
48秒前
优雅的千雁完成签到,获得积分10
1分钟前
科目三应助JJH采纳,获得10
1分钟前
忧虑的靖巧完成签到 ,获得积分10
1分钟前
Deila完成签到 ,获得积分0
1分钟前
DayFu完成签到 ,获得积分10
1分钟前
搬砖的化学男完成签到 ,获得积分0
1分钟前
1分钟前
myf完成签到 ,获得积分10
1分钟前
rl完成签到,获得积分10
1分钟前
文艺的小刺猬完成签到 ,获得积分10
1分钟前
Akim应助kiddchow采纳,获得10
1分钟前
老邱完成签到,获得积分10
1分钟前
HHM发布了新的文献求助10
1分钟前
TT完成签到 ,获得积分10
1分钟前
爱静静应助醉熏的伊采纳,获得10
1分钟前
1分钟前
kiddchow发布了新的文献求助10
1分钟前
饱满的棒棒糖完成签到 ,获得积分10
1分钟前
qinqiny完成签到 ,获得积分10
1分钟前
成就的绮烟完成签到 ,获得积分10
2分钟前
醉熏的伊完成签到,获得积分10
2分钟前
nusiew完成签到,获得积分10
2分钟前
kiddchow完成签到,获得积分10
2分钟前
稳重完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788025
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010