A transfer learning approach to few-shot segmentation of novel white matter tracts

分割 人工智能 计算机科学 市场细分 学习迁移 卷积神经网络 模式识别(心理学) 白质 深度学习 任务(项目管理) 计算机视觉 磁共振成像 业务 放射科 医学 经济 营销 管理
作者
Qi Lu,Wan Liu,Zhizheng Zhuo,Yuxing Li,Yunyun Duan,Pinnan Yu,Liying Qu,Chuyang Ye,Yaou Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:79: 102454-102454 被引量:17
标识
DOI:10.1016/j.media.2022.102454
摘要

Convolutional neural networks (CNNs) have achieved state-of-the-art performance for white matter (WM) tract segmentation based on diffusion magnetic resonance imaging (dMRI). The training of the CNN-based segmentation model generally requires a large number of manual delineations of WM tracts, which can be expensive and time-consuming. Although it is possible to carefully curate abundant training data for a set of WM tracts of interest, there can also be novel WM tracts-i.e., WM tracts that are not included in the existing annotated WM tracts-that are specific to a new scientific problem, and it is desired that the novel WM tracts can be segmented without repeating the laborious collection of a large number of manual delineations for these tracts. One possible solution to the problem is to transfer the knowledge learned for segmenting existing WM tracts to the segmentation of novel WM tracts with a fine-tuning strategy, where a CNN pretrained for segmenting existing WM tracts is fine-tuned with only a few annotated scans to segment the novel WM tracts. However, in classic fine-tuning, the information in the last task-specific layer for segmenting existing WM tracts is completely discarded. In this work, based on the pretraining and fine-tuning framework, we propose an improved transfer learning approach to the segmentation of novel WM tracts in the few-shot setting, where all knowledge in the pretrained model is incorporated into the fine-tuning procedure. Specifically, from the weights of the pretrained task-specific layer for segmenting existing WM tracts, we derive a better initialization of the last task-specific layer for the target model that segments novel WM tracts. In addition, to allow further improvement of the initialization of the last layer and thus the segmentation performance in the few-shot setting, we develop a simple yet effective data augmentation strategy that generates synthetic annotated images with tract-aware image mixing. To validate the proposed method, we performed experiments on brain dMRI scans from public and private datasets under various experimental settings, and the results indicate that our method improves the performance of few-shot segmentation of novel WM tracts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耗尽完成签到,获得积分10
刚刚
烂漫驳发布了新的文献求助10
2秒前
轻松的贞完成签到,获得积分10
3秒前
李健应助balzacsun采纳,获得10
4秒前
轻松的悟空完成签到 ,获得积分10
6秒前
susan完成签到,获得积分10
7秒前
0029完成签到,获得积分10
9秒前
Aki完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
12秒前
LXR完成签到,获得积分10
14秒前
thchiang发布了新的文献求助10
15秒前
李健应助北城采纳,获得10
15秒前
WDK发布了新的文献求助10
15秒前
16秒前
轻松的贞发布了新的文献求助10
16秒前
医学生Mavis完成签到,获得积分10
18秒前
nextconnie完成签到,获得积分10
18秒前
汉堡包应助yyj采纳,获得10
19秒前
zqh740发布了新的文献求助30
20秒前
21秒前
NexusExplorer应助pharmstudent采纳,获得10
22秒前
熊遇蜜完成签到,获得积分10
24秒前
panzer完成签到,获得积分10
25秒前
26秒前
lyt发布了新的文献求助10
27秒前
六月毕业关注了科研通微信公众号
28秒前
petrichor应助程程采纳,获得10
29秒前
圆儿完成签到 ,获得积分10
29秒前
潇洒的灵萱完成签到,获得积分10
29秒前
29秒前
29秒前
Toooo完成签到,获得积分10
30秒前
zqh740完成签到,获得积分10
30秒前
科研通AI5应助thchiang采纳,获得10
30秒前
lizzzzzz完成签到,获得积分10
31秒前
yyj发布了新的文献求助10
31秒前
请和我吃饭完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824