已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stepwise Logistic Regression

回归 回归分析 线性回归
作者
Srikesh Arunajadai
出处
期刊:Anesthesia & Analgesia [Lippincott Williams & Wilkins]
卷期号:109 (1): 285-285 被引量:14
标识
DOI:10.1213/ane.0b013e3181a7b51a
摘要

To the Editor: Through simulations, Pace1 demonstrates in an editorial the difficulties of stepwise automatic variable selection as applied to logistic regression. I agree with Dr. Pace that one needs to exercise caution with any kind of model selection technique and that prior knowledge in the area of study is extremely important in covariate selection. In his editorial, Pace refers to three variants of automatic variable selection: forward selection, backward elimination, and stepwise regression and the simulations were presented for model selection using stepwise regression. From his supplementary data analysis codes, the model selection technique employed in the simulation was backward elimination. (For his specification of the model the software chooses backward elimination as the default method). Using the backward elimination method, there were 825 instances in the 1000 simulations with at least one significant covariate at P < 0.05. When the same simulations were repeated with either forward selection or stepwise regression, no covariate was found significant at P < 0.05. Pace also uses the Akaike Information Criterion2 to choose the model in backward elimination. The Bayesian Information Criterion,2 provides a greater penalty for the addition of an extra covariate. Simulation using the Bayesian Information Criterion failed to choose a single covariate at P < 0.05 in each of the 1000 simulations. Furthermore, with Pace’s simulation (i.e., backward elimination using Akaike Information Criterion for model selection), if one used multiple hypothesis tests3 and computed adjusted P values, then the number of instances where a significant covariate was selected would decrease to 414 instances (332 with 1, 73 with 2, and 9 with 3 covariates) (see our simulations in the online appendix, available at www.anesthesia-analgesia.org). These results demonstrate the effects the various model selection techniques and selection criteria have on the selection of the final model. Therefore, to interpret the data properly, it is always advisable to consider various model building and selection strategies in statistical analysis, as suggested by Dr. Pace. Srikesh G. Arunajadai, PhD Department of Anesthesiology and Biostatistics Columbia University New York City, New York [email protected]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧力蟹关注了科研通微信公众号
刚刚
刚刚
1秒前
1秒前
研友_VZG7GZ应助包容的绿蕊采纳,获得10
1秒前
2秒前
尹静涵完成签到 ,获得积分10
3秒前
3秒前
吉良吉影发布了新的文献求助10
4秒前
nitsuj发布了新的文献求助10
5秒前
6秒前
7秒前
木木发布了新的文献求助10
7秒前
南巷晚风发布了新的文献求助10
8秒前
moderater完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
16秒前
17秒前
17秒前
微笑的忆枫完成签到 ,获得积分10
17秒前
胜似闲庭信步完成签到,获得积分10
18秒前
Evan完成签到 ,获得积分10
20秒前
21秒前
czh驳回了Hello应助
21秒前
grass发布了新的文献求助10
22秒前
包容的绿蕊完成签到,获得积分20
24秒前
25秒前
俏皮白云完成签到 ,获得积分10
26秒前
清茶旧友完成签到,获得积分10
28秒前
dd发布了新的文献求助10
28秒前
HighFeng_Lei发布了新的文献求助10
29秒前
29秒前
nitsuj发布了新的文献求助10
29秒前
我是老大应助木木采纳,获得10
31秒前
33秒前
乐乐应助yehata采纳,获得10
34秒前
隐形语海完成签到 ,获得积分10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422