Stepwise Logistic Regression

回归 回归分析 线性回归
作者
Srikesh Arunajadai
出处
期刊:Anesthesia & Analgesia [Lippincott Williams & Wilkins]
卷期号:109 (1): 285-285 被引量:14
标识
DOI:10.1213/ane.0b013e3181a7b51a
摘要

To the Editor: Through simulations, Pace1 demonstrates in an editorial the difficulties of stepwise automatic variable selection as applied to logistic regression. I agree with Dr. Pace that one needs to exercise caution with any kind of model selection technique and that prior knowledge in the area of study is extremely important in covariate selection. In his editorial, Pace refers to three variants of automatic variable selection: forward selection, backward elimination, and stepwise regression and the simulations were presented for model selection using stepwise regression. From his supplementary data analysis codes, the model selection technique employed in the simulation was backward elimination. (For his specification of the model the software chooses backward elimination as the default method). Using the backward elimination method, there were 825 instances in the 1000 simulations with at least one significant covariate at P < 0.05. When the same simulations were repeated with either forward selection or stepwise regression, no covariate was found significant at P < 0.05. Pace also uses the Akaike Information Criterion2 to choose the model in backward elimination. The Bayesian Information Criterion,2 provides a greater penalty for the addition of an extra covariate. Simulation using the Bayesian Information Criterion failed to choose a single covariate at P < 0.05 in each of the 1000 simulations. Furthermore, with Pace’s simulation (i.e., backward elimination using Akaike Information Criterion for model selection), if one used multiple hypothesis tests3 and computed adjusted P values, then the number of instances where a significant covariate was selected would decrease to 414 instances (332 with 1, 73 with 2, and 9 with 3 covariates) (see our simulations in the online appendix, available at www.anesthesia-analgesia.org). These results demonstrate the effects the various model selection techniques and selection criteria have on the selection of the final model. Therefore, to interpret the data properly, it is always advisable to consider various model building and selection strategies in statistical analysis, as suggested by Dr. Pace. Srikesh G. Arunajadai, PhD Department of Anesthesiology and Biostatistics Columbia University New York City, New York [email protected]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助寂寞的朋友采纳,获得10
2秒前
crave发布了新的文献求助10
2秒前
岩追研完成签到,获得积分10
2秒前
Reeee完成签到 ,获得积分10
3秒前
孙夕然完成签到,获得积分10
3秒前
爆米花完成签到,获得积分10
4秒前
bzc229完成签到,获得积分0
6秒前
俞孤风完成签到,获得积分10
8秒前
8秒前
zhonghbush完成签到,获得积分10
9秒前
阳光的幻雪完成签到 ,获得积分10
10秒前
繁荣的青旋完成签到 ,获得积分10
11秒前
12秒前
踏实的盼秋完成签到,获得积分10
12秒前
AJ完成签到 ,获得积分10
12秒前
小小鱼完成签到 ,获得积分10
12秒前
14秒前
寂寞的朋友完成签到,获得积分10
14秒前
刘阳完成签到,获得积分10
15秒前
两颗西柚发布了新的文献求助10
16秒前
臧为完成签到,获得积分10
17秒前
暴躁的海豚完成签到,获得积分10
19秒前
19秒前
仁爱的觅夏完成签到,获得积分10
19秒前
所所应助小土豆采纳,获得10
20秒前
oyc完成签到,获得积分10
21秒前
月光疾风完成签到,获得积分10
21秒前
21秒前
chx8830316发布了新的文献求助10
23秒前
lht完成签到 ,获得积分10
24秒前
胡楠完成签到,获得积分10
24秒前
领导范儿应助hehe采纳,获得10
24秒前
yiming完成签到,获得积分10
25秒前
康轲完成签到,获得积分10
25秒前
张雨欣完成签到 ,获得积分10
25秒前
云初完成签到,获得积分10
25秒前
怡然猎豹完成签到,获得积分10
27秒前
潇洒的语蝶完成签到 ,获得积分10
27秒前
加减乘除完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008892
求助须知:如何正确求助?哪些是违规求助? 3548554
关于积分的说明 11299093
捐赠科研通 3283171
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811245