胆碱
内科学
内分泌学
化学
脂解
鞘磷脂
磷脂酰乙醇胺
脂质代谢
磷脂酰胆碱
生物化学
胆固醇
生物
磷脂
脂肪组织
医学
膜
作者
Laila C. Schenkel,Sugashan Sivanesan,Junzeng Zhang,Birgitte Wuyts,Adrian Taylor,Adronie Verbrugghe,Marica Bakovic
标识
DOI:10.1016/j.jnutbio.2015.05.014
摘要
Choline plays a critical role in systemic lipid metabolism and hepatic function. Here we conducted a series of experiments to investigate the effect of choline supplementation on metabolically altered Pcyt2+/− mice. In Pcyt2+/− mice, the membrane phosphatidylethanolamine (PE) turnover is reduced and the formation of fatty acids (FA) and triglycerides (TAG) increased, resulting in hypertriglyceridemia, liver steatosis and obesity. One month of choline supplementation reduced the incorporation of FA into TAG and facilitated TAG degradation in Pcyt2+/− adipocytes, plasma and liver. Choline particularly stimulated adipocyte and liver TAG lipolysis by specific lipases (ATGL, LPL and HSL) and inhibited TAG formation by DGAT1 and DGAT2. Choline also activated the liver AMPK and mitochondrial FA oxidation gene PPARα and reduced the FA synthesis genes SREBP1, SCD1 and FAS. Liver (HPLC) and plasma (tandem mass spectroscopy and 1H-NMR) metabolite profiling established that Pcyt2+/− mice have reduced membrane cholesterol/sphingomyelin ratio and the homocysteine/methionine cycle that were improved by choline supplementation. These data suggest that supplementary choline is beneficial for restoring FA and TAG homeostasis under conditions of obesity caused by impaired PE synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI