光学
全息术
数字全息显微术
数字全息术
波长
相位成像
干扰(通信)
物理
显微镜
相(物质)
空间光调制器
光学镊子
显微镜
计算机科学
频道(广播)
量子力学
计算机网络
作者
Meng Huang,Hongpeng Qin,Zhuqing Jiang
出处
期刊:Applied Optics
[Optica Publishing Group]
日期:2021-04-28
卷期号:60 (15): 4418-4418
被引量:17
摘要
A single-shot dual-wavelength digital holographic microscopy with an adjustable off-axis configuration is presented, which helps realize real-time quantitative phase imaging for living cells. With this configuration, two sets of interference fringes corresponding to their wavelengths can be flexibly recorded onto one hologram in one shot. The universal expression on the dual-wavelength hologram recorded under any wave vector orientation angles of reference beams is given. To avoid as much as possible the effect of zero-order spectrum, we can flexibly select their carry frequencies for the two wavelengths using this adjustable off-axis configuration, according to the distribution feature of object's spatial-frequency spectrum. This merit is verified by a quantitative phase imaging experiment for the microchannel of a microfluidic chip. The reconstructed phase maps of living onion epidermal cells exhibit cellular internal life activities, for the first time to the best of our knowledge, vividly displaying the progress of the nucleus, cell wall, cytoskeleton, and the substance transport in microtubules inside living cells. These imaging results demonstrate the availability and reliability of the presented method for real-time quantitative phase imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI