Reinforcement Learning with Dual Attention Guided Graph Convolution for Relation Extraction

强化学习 计算机科学 关系抽取 特征学习 编码 特征提取 图形 卷积(计算机科学) 人工智能 节点(物理) 特征(语言学) 关系(数据库) 代表(政治) 理论计算机科学 模式识别(心理学) 数据挖掘 信息抽取 人工神经网络 生物化学 化学 语言学 哲学 结构工程 政治 法学 工程类 政治学 基因
作者
Zhixin Li,Yaru Sun,Suqin Tang,Canlong Zhang,Huifang Ma
标识
DOI:10.1109/icpr48806.2021.9412654
摘要

To better learn the dependency relationship between nodes, we address the relationship extraction task by capturing rich contextual dependencies based on the attention mechanism, and using distributional reinforcement learning to generate optimal relation information representation. This method is called Dual Attention Graph Convolutional Network (DAGCN), to adaptively integrate local features with their global dependencies. Specifically, the samples are represented as nodes on the graph, and the relationships within and between nodes are studied. We consider the influence between node feature locations and associate each location information of the feature with other features. This allows the feature vector to contain a wider range of semantic information to enhance the ability of feature representation. We consider the information features of node dependence, use adjacent nodes to represent their own nodes, and encode the features of node relation, so as to enhance the global dependence between nodes. We sum the outputs of the two attention modules and use reinforcement learning to predict the classification of nodes relationship to further improve feature representation which contributes to more precise extraction results. The results on the common datasets show that the model can obtain more useful information for relational extraction tasks, and achieve better performances on various evaluation indexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
威武的碧凡完成签到,获得积分20
2秒前
百香果发布了新的文献求助10
4秒前
迷人兰花完成签到,获得积分10
4秒前
小豆豆应助冬冬不是采纳,获得30
5秒前
nebula应助冬冬不是采纳,获得10
5秒前
6秒前
6秒前
高路发布了新的文献求助10
6秒前
醉熏的筝发布了新的文献求助10
6秒前
6秒前
FashionBoy应助郑zhenglanyou采纳,获得10
8秒前
8秒前
饭团发布了新的文献求助10
8秒前
871004188完成签到,获得积分10
9秒前
系小小鱼啊完成签到,获得积分10
10秒前
深情安青应助Kz采纳,获得10
11秒前
CC发布了新的文献求助10
11秒前
xiaomaxia完成签到 ,获得积分10
13秒前
14秒前
14秒前
田様应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
Akim应助单纯的寄云采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
拼搏听寒发布了新的文献求助10
15秒前
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
yookia应助科研通管家采纳,获得10
15秒前
15秒前
yx_cheng应助科研通管家采纳,获得60
15秒前
所所应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032