Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems

多边形网格 计算机科学 数学优化 偏微分方程 人工神经网络 非线性系统 理论计算机科学 数学 算法 人工智能 量子力学 物理 计算机图形学(图像) 数学分析
作者
Han Gao,Matthew J. Zahr,Jianxun Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:390: 114502-114502 被引量:231
标识
DOI:10.1016/j.cma.2021.114502
摘要

Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助别说话采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
美羊羊完成签到,获得积分10
1秒前
小少发布了新的文献求助10
1秒前
维奈克拉应助ZJX采纳,获得20
1秒前
2秒前
Akim应助幸福电灯胆采纳,获得10
2秒前
ShiXimei发布了新的文献求助10
3秒前
Skye关注了科研通微信公众号
4秒前
西瓜汽水完成签到,获得积分10
4秒前
Scheduling完成签到 ,获得积分10
5秒前
5秒前
pan20完成签到,获得积分10
6秒前
7秒前
dddddd发布了新的文献求助10
7秒前
波波要发sci完成签到 ,获得积分10
7秒前
8秒前
lvbowen发布了新的文献求助10
8秒前
半田清舟发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
丰知然应助健忘以旋采纳,获得10
12秒前
浮游应助美好斓采纳,获得10
12秒前
li发布了新的文献求助10
13秒前
科研通AI2S应助Ryoma采纳,获得10
14秒前
323431发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
Hello应助zpc采纳,获得30
15秒前
彭泽阳完成签到,获得积分10
15秒前
123发布了新的文献求助10
16秒前
bkagyin应助lvbowen采纳,获得10
16秒前
ZZX发布了新的文献求助30
17秒前
冲浪男孩226完成签到,获得积分10
18秒前
Rottyyii完成签到,获得积分20
19秒前
慕青应助失眠的流沙采纳,获得10
19秒前
星星完成签到 ,获得积分10
20秒前
褚香旋完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546