Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems

多边形网格 计算机科学 数学优化 偏微分方程 人工神经网络 非线性系统 理论计算机科学 数学 算法 人工智能 量子力学 物理 计算机图形学(图像) 数学分析
作者
Han Gao,Matthew J. Zahr,Jianxun Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:390: 114502-114502 被引量:231
标识
DOI:10.1016/j.cma.2021.114502
摘要

Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
羊羊完成签到,获得积分10
1秒前
安详墨镜发布了新的文献求助10
1秒前
1秒前
李爱国应助宿亮东采纳,获得10
1秒前
2秒前
2秒前
幸运霖发布了新的文献求助10
2秒前
你我战发布了新的文献求助10
2秒前
科研通AI2S应助称心的雁兰采纳,获得10
3秒前
zz完成签到,获得积分10
3秒前
3秒前
CC发布了新的文献求助10
3秒前
glycine发布了新的文献求助10
4秒前
科目三应助凌寒233采纳,获得10
4秒前
4秒前
虚幻的手机完成签到,获得积分20
5秒前
ddsyg126发布了新的文献求助10
6秒前
五岁的蜡笔小新完成签到,获得积分10
6秒前
无花果应助崔昕雨采纳,获得10
6秒前
Hyeri发布了新的文献求助10
6秒前
蔡伟伦发布了新的文献求助10
6秒前
小蘑菇应助西游采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
何以解忧发布了新的文献求助10
7秒前
JachinHe完成签到,获得积分10
7秒前
爆米花应助Othinus采纳,获得10
7秒前
8秒前
麻辣小丁发布了新的文献求助10
8秒前
8秒前
gaga发布了新的文献求助30
8秒前
9秒前
Ava应助星梦采纳,获得10
9秒前
10秒前
田様应助waaan采纳,获得10
10秒前
11秒前
天天快乐应助Anny采纳,获得30
11秒前
脈打驳回了桐桐应助
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613029
求助须知:如何正确求助?哪些是违规求助? 4698296
关于积分的说明 14897022
捐赠科研通 4734847
什么是DOI,文献DOI怎么找? 2546821
邀请新用户注册赠送积分活动 1510838
关于科研通互助平台的介绍 1473494