Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward and inverse problems

多边形网格 计算机科学 数学优化 偏微分方程 人工神经网络 非线性系统 理论计算机科学 数学 算法 人工智能 量子力学 物理 计算机图形学(图像) 数学分析
作者
Han Gao,Matthew J. Zahr,Jianxun Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:390: 114502-114502 被引量:231
标识
DOI:10.1016/j.cma.2021.114502
摘要

Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are based on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助Shokuhou采纳,获得30
1秒前
2秒前
2秒前
小蘑菇应助Tiako采纳,获得10
2秒前
飘飘发布了新的文献求助10
4秒前
5秒前
义气的钥匙完成签到,获得积分10
5秒前
沫沫发布了新的文献求助10
5秒前
6秒前
7秒前
嘿嘿发布了新的文献求助10
7秒前
8秒前
Wangle发布了新的文献求助10
8秒前
9秒前
pan完成签到,获得积分10
9秒前
9秒前
鱼非非鱼完成签到 ,获得积分10
9秒前
ff发布了新的文献求助20
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
老福贵儿应助chun采纳,获得10
12秒前
silk发布了新的文献求助10
13秒前
13秒前
bravo完成签到,获得积分0
13秒前
iris2333发布了新的文献求助10
14秒前
14秒前
可爱的函函应助suzy采纳,获得10
15秒前
机智涵阳完成签到,获得积分10
16秒前
16秒前
鲤鱼凛发布了新的文献求助10
17秒前
科研通AI6应助星河采纳,获得10
17秒前
abrin08发布了新的文献求助10
19秒前
20秒前
共享精神应助Wangle采纳,获得10
20秒前
yaya完成签到,获得积分10
20秒前
20秒前
zzzzz完成签到,获得积分10
21秒前
岚12完成签到 ,获得积分10
21秒前
hongjing发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537308
求助须知:如何正确求助?哪些是违规求助? 4624842
关于积分的说明 14593552
捐赠科研通 4565384
什么是DOI,文献DOI怎么找? 2502279
邀请新用户注册赠送积分活动 1480966
关于科研通互助平台的介绍 1452190