The superoleophobic/superhydrophilic material has attracted considerable interest due to the incomparable property of it for the oil–water separation. However, it is a challenge to make the prepared surface superoleophobic and superhydrophilic at the same time since the oleophobic surface tends to repel water. Herein, a hygro-responsive superoleophobic/superhydrophilic coating was fabricated by liquid-phase deposition of TiO2 with perfluorooctanoic acid. The wettability of the coating could complete the transformation from superoleophobicity/superhydrophilicity to superhydrophobicity/superoleophilicity, both of which exhibit excellent selective superwettability under the air, underwater, salt, alkali, and acid conditions. The hygro-responsive coating can separate different types of oil–water mixtures, and the separation efficiency could be over 99% using different capillary forces acting on the oil and water phases before and after wettability transformation. Last but not least, long-chain perfluoroalkyl substances on the coating could be decomposed by UV irradiation, which could reduce the harm to the environment and human beings. It is anticipated that the developed superoleophobic/superhydrophilic coating provides a feasible solution for the application of oil–water separation.