已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modelling and analysis of artificial intelligence for commercial vehicle assembly process in VUCA world: a case study

聚类分析 背景(考古学) 计算机科学 机器学习 工程类 过程(计算) 组分(热力学) 人工智能 制造工程 工业工程 可靠性工程 生物 热力学 操作系统 物理 古生物学
作者
Manimuthu Arunmozhi,V.G. Venkatesh,V. Raja Sreedharan,Venkatesh Mani
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:60 (14): 4529-4547 被引量:20
标识
DOI:10.1080/00207543.2021.1910361
摘要

Real-time monitoring, is now the integral component in smart manufacturing with the rapid application of Artificial Intelligence (AI) in manufacturing. Machine Learning (ML) algorithms and Internet of things (IoT) make the volatility, uncertainty, complexity, and ambiguity world (VUCA) more reliable and resilient with the stable industrial environment. In this study, two machine learning algorithms such as K-mean clustering and support vector, are used in combination with IoT-enabled embedded devices to design, deploy and test the effectiveness of the vehicle assembly process in the VUCA context. To accomplish this, the design includes both real-time data and training vector data, which were collected from IoT-enabled devices and evaluated using ML algorithms leading to the novel element called Smart Safe Factor (SSF), a critical threshold indicator that helps in limiting different units in assembly line-ups from excess wastages and energy losses in real-time. Test results highlight the impact of AI in enhancing the productivity and efficiency. Using SSF, 21.84% of energy is saved during the entire assembly process and 8% of excess stocks in storage have been curtailed for monetary benefits. This study deliberates the applications of AI and ML algorithms in a Vehicle Assembly (VA) model, connecting critical parameters such as cost, performance, energy, and productivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助晗晗有酒窝采纳,获得10
2秒前
4秒前
布可完成签到,获得积分10
6秒前
8秒前
善学以致用应助勤劳宛菡采纳,获得30
9秒前
11秒前
怡然的向南完成签到,获得积分10
13秒前
13秒前
Justin完成签到,获得积分10
14秒前
15秒前
16秒前
田様应助左岸采纳,获得10
16秒前
丘比特应助寒雨采纳,获得10
17秒前
后会无期完成签到,获得积分10
17秒前
良辰应助我超爱cs采纳,获得10
18秒前
xuexin发布了新的文献求助10
18秒前
酷波er应助123采纳,获得10
19秒前
知了睡醒了完成签到 ,获得积分10
19秒前
21秒前
22秒前
23秒前
Bystander完成签到 ,获得积分10
24秒前
25秒前
科研通AI5应助xuexin采纳,获得10
25秒前
勤劳宛菡发布了新的文献求助30
26秒前
早起困困完成签到,获得积分10
29秒前
左岸发布了新的文献求助10
29秒前
31秒前
33秒前
33秒前
34秒前
xuexin完成签到,获得积分10
35秒前
深情安青应助美丽的冷风采纳,获得10
36秒前
Peggy完成签到 ,获得积分10
38秒前
39秒前
王大壮完成签到,获得积分10
40秒前
41秒前
无花果应助老阳采纳,获得10
42秒前
敏er发布了新的文献求助10
43秒前
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671080
求助须知:如何正确求助?哪些是违规求助? 3227979
关于积分的说明 9777835
捐赠科研通 2938188
什么是DOI,文献DOI怎么找? 1609774
邀请新用户注册赠送积分活动 760457
科研通“疑难数据库(出版商)”最低求助积分说明 735962