Exploring deep learning for air pollutant emission estimation

排放清单 人工神经网络 环境科学 氮氧化物 污染物 空气质量指数 化学输运模型 污染 气象学 空气污染 计算机科学 人工智能 化学 地理 生态学 有机化学 生物 燃烧
作者
Lin Huang,Song Liu,Zeyuan Yang,Jia Xing,Jia Zhang,Jiang Bian,Siwei Li,Shovan Kumar Sahu,Shuxiao Wang,Tie‐Yan Liu
出处
期刊:Geoscientific Model Development [Copernicus Publications]
卷期号:14 (7): 4641-4654 被引量:44
标识
DOI:10.5194/gmd-14-4641-2021
摘要

Abstract. The inaccuracy of anthropogenic emission inventories on a high-resolution scale due to insufficient basic data is one of the major reasons for the deviation between air quality model and observation results. A bottom-up approach, which is a typical emission inventory estimation method, requires a lot of human labor and material resources, whereas a top-down approach focuses on individual pollutants that can be measured directly as well as relying heavily on traditional numerical modeling. Lately, the deep neural network approach has achieved rapid development due to its high efficiency and nonlinear expression ability. In this study, we proposed a novel method to model the dual relationship between an emission inventory and pollution concentrations for emission inventory estimation. Specifically, we utilized a neural-network-based comprehensive chemical transport model (NN-CTM) to explore the complex correlation between emission and air pollution. We further updated the emission inventory based on back-propagating the gradient of the loss function measuring the deviation between NN-CTM and observations from surface monitors. We first mimicked the CTM model with neural networks (NNs) and achieved a relatively good representation of the CTM, with similarity reaching 95 %. To reduce the gap between the CTM and observations, the NN model suggests updated emissions of NOx, NH3, SO2, volatile organic compounds (VOCs) and primary PM2.5 changing, on average, by −1.34 %, −2.65 %, −11.66 %, −19.19 % and 3.51 %, respectively, in China for 2015. Such ratios of NOx and PM2.5 are even higher (∼ 10 %) in regions that suffer from large uncertainties in original emissions, such as Northwest China. The updated emission inventory can improve model performance and make it closer to observations. The mean absolute error for NO2, SO2, O3 and PM2.5 concentrations are reduced significantly (by about 10 %–20 %), indicating the high feasibility of NN-CTM in terms of significantly improving both the accuracy of the emission inventory and the performance of the air quality model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不着四六的岁月完成签到,获得积分10
刚刚
yangya给yangya的求助进行了留言
刚刚
light完成签到,获得积分10
1秒前
情怀应助gf采纳,获得10
1秒前
2秒前
3秒前
yizili发布了新的文献求助30
4秒前
6秒前
kinghao完成签到,获得积分10
8秒前
8秒前
8秒前
Joey完成签到,获得积分20
9秒前
9秒前
10秒前
不眠的人完成签到,获得积分10
10秒前
11秒前
12秒前
BBking完成签到,获得积分10
12秒前
顾矜应助douyq采纳,获得10
12秒前
12秒前
13秒前
沉默洋葱完成签到,获得积分10
14秒前
镜子发布了新的文献求助10
15秒前
小北发布了新的文献求助10
16秒前
Lucas应助学术小王子采纳,获得10
17秒前
17秒前
cy关注了科研通微信公众号
17秒前
胡几枚发布了新的文献求助10
17秒前
JHcHuN完成签到,获得积分10
18秒前
18秒前
18秒前
Owen应助Tessa采纳,获得10
18秒前
Waqas发布了新的文献求助10
18秒前
英俊的铭应助xxxhl采纳,获得10
18秒前
gf发布了新的文献求助10
18秒前
yangya给yangya的求助进行了留言
19秒前
jianghe完成签到,获得积分10
20秒前
yy应助jacs111采纳,获得10
22秒前
曹梦梦发布了新的文献求助10
22秒前
华子黄发布了新的文献求助10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442