内吞作用
网格蛋白
紧密连接
黄曲霉毒素
并行传输
肠道通透性
异硫氰酸荧光素
内化
生物
碳酸钙-2
势垒函数
细胞生物学
体外
体内
肠粘膜
化学
细胞
生物化学
磁导率
免疫学
内科学
食品科学
生物技术
医学
物理
荧光
量子力学
膜
作者
Yanan Gao,Xiaoyu Bao,Lu Meng,Huimin Liu,Jiaqi Wang,Nan Zheng
出处
期刊:Toxins
[MDPI AG]
日期:2021-03-02
卷期号:13 (3): 184-184
被引量:29
标识
DOI:10.3390/toxins13030184
摘要
With the growing diversity and complexity of diet, humans are at risk of simultaneous exposure to aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1), which are well-known contaminants in dairy and other agricultural products worldwide. The intestine represents the first barrier against external contaminants; however, evidence about the combined effect of AFB1 and AFM1 on intestinal integrity is lacking. In vivo, the serum biochemical parameters related to intestinal barrier function, ratio of villus height/crypt depth, and distribution pattern of claudin-1 and zonula occluden-1 were significantly affected in mice exposed to 0.3 mg/kg b.w. AFB1 and 3.0 mg/kg b.w. AFM1. In vitro results on differentiated Caco-2 cells showed that individual and combined AFB1 (0.5 and 4 μg/mL) and AFM1 (0.5 and 4 μg/mL) decreased cell viability and trans-epithelial electrical resistance values as well as increased paracellular permeability of fluorescein isothiocyanate-dextran in a dose-dependent manner. Furthermore, AFM1 aggravated AFB1-induced compromised intestinal barrier, as demonstrated by the down-regulation of tight junction proteins and their redistribution, particularly internalization. Adding the inhibitor chlorpromazine illustrated that clathrin-mediated endocytosis partially contributed to the compromised intestinal integrity. Synergistic and additive effects were the predominant interactions, suggesting that these toxins are likely to have negative effects on human health.
科研通智能强力驱动
Strongly Powered by AbleSci AI