A Survey of Incentive Mechanism Design for Federated Learning

计算机科学 激励 众包 云计算 知识管理 机器学习 人工智能 万维网 操作系统 经济 微观经济学
作者
Yufeng Zhan,Jie Zhang,Zicong Hong,Leijie Wu,Peng Li,Song Guo
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:181
标识
DOI:10.1109/tetc.2021.3063517
摘要

Federated learning is promising in enabling large-scale machine learning by massive clients without exposing their raw data. It can not only enable the clients to preserve the privacy information, but also achieve high learning performance. Existing works of federated learning mainly focus on improving learning performance in terms of model accuracy and learning task completion time. However, in practice, clients are reluctant to participate in the learning process without receiving compensation. Therefore, how to effectively motivate the clients to actively and reliably participate in federated learning is paramount. As compared to the current incentive mechanism design in other fields, such as crowdsourcing, cloud computing, smart grid, etc., the incentive mechanism for federated learning is more challenging. First, it is hard to evaluate the training data value of each client. Second, it is difficult to model the learning performance of different federated learning algorithms. In this paper, we survey the incentive mechanism design for federated learning. In particular, we present a taxonomy of existing incentive mechanisms for federated learning, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, some future directions of how to incentivize clients in federated learning have been discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
蓝鲸完成签到 ,获得积分10
1秒前
owlpppppwq发布了新的文献求助10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助keyanzhang采纳,获得10
2秒前
辛勤千筹发布了新的文献求助20
2秒前
dyp完成签到,获得积分10
2秒前
3秒前
meng发布了新的文献求助10
3秒前
bigboss发布了新的文献求助10
3秒前
4秒前
司南应助沉静从凝采纳,获得50
4秒前
5秒前
Sschi发布了新的文献求助50
5秒前
w我我我发布了新的文献求助10
5秒前
5秒前
wangqi完成签到,获得积分20
6秒前
7秒前
7秒前
无限的板栗完成签到 ,获得积分10
7秒前
xxy发布了新的文献求助10
7秒前
gattina完成签到,获得积分10
8秒前
8秒前
橡树完成签到,获得积分10
9秒前
5小0完成签到,获得积分20
9秒前
Dany发布了新的文献求助10
9秒前
淡淡的襄完成签到,获得积分10
9秒前
青云天发布了新的文献求助10
10秒前
10秒前
yiwen完成签到,获得积分10
10秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Brave Genius 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221970
求助须知:如何正确求助?哪些是违规求助? 2870660
关于积分的说明 8171566
捐赠科研通 2537658
什么是DOI,文献DOI怎么找? 1369566
科研通“疑难数据库(出版商)”最低求助积分说明 645546
邀请新用户注册赠送积分活动 619234