Single-Image Super-Resolution for Remote Sensing Images Using a Deep Generative Adversarial Network With Local and Global Attention Mechanisms

计算机科学 判别式 人工智能 深度学习 卷积神经网络 鉴别器 光学(聚焦) 航程(航空) 模式识别(心理学) 机器学习 电信 探测器 光学 物理 复合材料 材料科学
作者
Yadong Li,Sébastien Mavromatis,Feng Zhang,Zhenhong Du,Jean Séqueira,Zhongyi Wang,Xianwei Zhao,Renyi Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-24 被引量:39
标识
DOI:10.1109/tgrs.2021.3093043
摘要

Super-resolution (SR) technology is an important way to improve spatial resolution under the condition of sensor hardware limitations. With the development of deep learning (DL), some DL-based SR models have achieved state-of-the-art performance, especially the convolutional neural network (CNN). However, considering that remote sensing images usually contain a variety of ground scenes and objects with different scales, orientations, and spectral characteristics, previous works usually treat important and unnecessary features equally or only apply different weights in the local receptive field, which ignores long-range dependencies; it is still a challenging task to exploit features on different levels and reconstruct images with realistic details. To address these problems, an attention-based generative adversarial network (SRAGAN) is proposed in this article, which applies both local and global attention mechanisms. Specifically, we apply local attention in the SR model to focus on structural components of the earth’s surface that require more attention, and global attention is used to capture long-range interdependencies in the channel and spatial dimensions to further refine details. To optimize the adversarial learning process, we also use local and global attentions in the discriminator model to enhance the discriminative ability and apply the gradient penalty in the form of hinge loss and loss function that combines $L1$ pixel loss, $L1$ perceptual loss, and relativistic adversarial loss to promote rich details. The experiments show that SRAGAN can achieve performance improvements and reconstruct better details compared with current state-of-the-art SR methods. A series of ablation investigations and model analyses validate the efficiency and effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱笑晓曼发布了新的文献求助20
3秒前
老大蒂亚戈应助YJ888采纳,获得10
4秒前
JamesPei应助潇湘雪月采纳,获得10
4秒前
bbczj发布了新的文献求助10
6秒前
7秒前
8秒前
南风知我意完成签到,获得积分20
9秒前
段一帆发布了新的文献求助30
11秒前
wangqinlei完成签到 ,获得积分10
11秒前
fenghp发布了新的文献求助10
12秒前
王馨雨发布了新的文献求助10
12秒前
14秒前
CipherSage应助ccalvintan采纳,获得10
15秒前
15秒前
雪天的阳完成签到 ,获得积分10
17秒前
18秒前
19秒前
19秒前
烟花应助ren采纳,获得10
20秒前
讨厌科研发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
苏卿应助科研通管家采纳,获得30
22秒前
fd163c应助科研通管家采纳,获得10
23秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
思源应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得10
23秒前
23秒前
CAOHOU应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
SYLH应助科研通管家采纳,获得30
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
23秒前
殷勤的紫槐完成签到,获得积分10
23秒前
风轻青柠发布了新的文献求助10
24秒前
24秒前
机智冬灵完成签到,获得积分10
25秒前
26秒前
为小嗳打伞完成签到 ,获得积分10
28秒前
小木安华发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174