亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Single-Image Super-Resolution for Remote Sensing Images Using a Deep Generative Adversarial Network With Local and Global Attention Mechanisms

计算机科学 判别式 人工智能 深度学习 卷积神经网络 鉴别器 光学(聚焦) 航程(航空) 模式识别(心理学) 机器学习 电信 探测器 光学 物理 复合材料 材料科学
作者
Yadong Li,Sébastien Mavromatis,Feng Zhang,Zhenhong Du,Jean Séqueira,Zhongyi Wang,Xianwei Zhao,Renyi Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-24 被引量:34
标识
DOI:10.1109/tgrs.2021.3093043
摘要

Super-resolution (SR) technology is an important way to improve spatial resolution under the condition of sensor hardware limitations. With the development of deep learning (DL), some DL-based SR models have achieved state-of-the-art performance, especially the convolutional neural network (CNN). However, considering that remote sensing images usually contain a variety of ground scenes and objects with different scales, orientations, and spectral characteristics, previous works usually treat important and unnecessary features equally or only apply different weights in the local receptive field, which ignores long-range dependencies; it is still a challenging task to exploit features on different levels and reconstruct images with realistic details. To address these problems, an attention-based generative adversarial network (SRAGAN) is proposed in this article, which applies both local and global attention mechanisms. Specifically, we apply local attention in the SR model to focus on structural components of the earth’s surface that require more attention, and global attention is used to capture long-range interdependencies in the channel and spatial dimensions to further refine details. To optimize the adversarial learning process, we also use local and global attentions in the discriminator model to enhance the discriminative ability and apply the gradient penalty in the form of hinge loss and loss function that combines $L1$ pixel loss, $L1$ perceptual loss, and relativistic adversarial loss to promote rich details. The experiments show that SRAGAN can achieve performance improvements and reconstruct better details compared with current state-of-the-art SR methods. A series of ablation investigations and model analyses validate the efficiency and effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钮祜禄萱完成签到 ,获得积分10
55秒前
1分钟前
震动的听枫完成签到,获得积分10
1分钟前
kuoping完成签到,获得积分10
1分钟前
2分钟前
是呀完成签到 ,获得积分10
2分钟前
牛八先生完成签到,获得积分10
3分钟前
wanci应助己凡采纳,获得10
4分钟前
JamesPei应助己凡采纳,获得10
4分钟前
无花果应助己凡采纳,获得10
4分钟前
慕青应助己凡采纳,获得10
4分钟前
糟糕的铁锤应助己凡采纳,获得10
4分钟前
糟糕的铁锤应助己凡采纳,获得10
4分钟前
bkagyin应助己凡采纳,获得10
4分钟前
糟糕的铁锤应助己凡采纳,获得10
4分钟前
NexusExplorer应助己凡采纳,获得10
4分钟前
糟糕的铁锤应助己凡采纳,获得10
4分钟前
4分钟前
TYM发布了新的文献求助30
4分钟前
糟糕的铁锤应助flow采纳,获得10
5分钟前
TYM发布了新的文献求助10
5分钟前
YYYCCCCC发布了新的文献求助30
6分钟前
糟糕的铁锤应助flow采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
王浩伟完成签到 ,获得积分10
7分钟前
YYYCCCCC完成签到,获得积分10
7分钟前
香菜张完成签到,获得积分10
8分钟前
糟糕的铁锤应助flow采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
糟糕的铁锤应助己凡采纳,获得10
9分钟前
orixero应助己凡采纳,获得10
9分钟前
糟糕的铁锤应助己凡采纳,获得10
9分钟前
所所应助己凡采纳,获得10
9分钟前
糟糕的铁锤应助己凡采纳,获得10
9分钟前
852应助己凡采纳,获得10
9分钟前
ding应助己凡采纳,获得10
9分钟前
糟糕的铁锤应助己凡采纳,获得10
9分钟前
英俊的铭应助己凡采纳,获得30
9分钟前
慕青应助己凡采纳,获得10
9分钟前
flow完成签到,获得积分10
9分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268717
求助须知:如何正确求助?哪些是违规求助? 2908158
关于积分的说明 8344665
捐赠科研通 2578555
什么是DOI,文献DOI怎么找? 1402143
科研通“疑难数据库(出版商)”最低求助积分说明 655288
邀请新用户注册赠送积分活动 634459